Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2809 Janelia Publications

Showing 101-110 of 2809 results
07/15/19 | A genetically encoded fluorescent sensor for in vivo imaging of GABA.
Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T, Jensen TP, Kolb I, Knott EL, Novak O, Podgorski K, Leidenheimer NJ, Rusakov DA, Ahrens MB, Kullmann DM, Looger LL
Nature Methods. 2019 Jul 15;16(8):763-770. doi: 10.1038/s41592-019-0471-2

Current techniques for monitoring GABA (γ-aminobutyric acid), the primary inhibitory neurotransmitter in vertebrates, cannot follow transients in intact neural circuits. To develop a GABA sensor, we applied the design principles used to create the fluorescent glutamate receptor iGluSnFR. We used a protein derived from a previously unsequenced Pseudomonas fluorescens strain and performed structure-guided mutagenesis and library screening to obtain intensity-based GABA sensing fluorescence reporter (iGABASnFR) variants. iGABASnFR is genetically encoded, detects GABA release evoked by electric stimulation of afferent fibers in acute brain slices and produces readily detectable fluorescence increases in vivo in mice and zebrafish. We applied iGABASnFR to track mitochondrial GABA content and its modulation by an anticonvulsant, swimming-evoked, GABA-mediated transmission in zebrafish cerebellum, GABA release events during interictal spikes and seizures in awake mice, and found that GABA-mediated tone decreases during isoflurane anesthesia.

View Publication Page
Svoboda Lab
12/09/08 | A genetically encoded fluorescent sensor of ERK activity.
Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K
Proceedings of the National Academy of Sciences of the United States of America. 2008 Dec 9;105(49):19264-9. doi: 10.1073/pnas.0804598105

The activity of the ERK has complex spatial and temporal dynamics that are important for the specificity of downstream effects. However, current biochemical techniques do not allow for the measurement of ERK signaling with fine spatiotemporal resolution. We developed a genetically encoded, FRET-based sensor of ERK activity (the extracellular signal-regulated kinase activity reporter, EKAR), optimized for signal-to-noise ratio and fluorescence lifetime imaging. EKAR selectively and reversibly reported ERK activation in HEK293 cells after epidermal growth factor stimulation. EKAR signals were correlated with ERK phosphorylation, required ERK activity, and did not report the activities of JNK or p38. EKAR reported ERK activation in the dendrites and nucleus of hippocampal pyramidal neurons in brain slices after theta-burst stimuli or trains of back-propagating action potentials. EKAR therefore permits the measurement of spatiotemporal ERK signaling dynamics in living cells, including in neuronal compartments in intact tissues.

View Publication Page
01/21/19 | A genetically encoded near-infrared fluorescent calcium ion indicator.
Qian Y, Piatkevich KD, Mc Larney B, Abdelfattah AS, Mehta S, Murdock MH, Gottschalk S, Molina RS, Zhang W, Chen Y, Wu J, Drobizhev M, Hughes TE, Zhang J, Schreiter ER, Shoham S, Razansky D, Boyden ES, Campbell RE
Nature Methods. 2019 Jan 21;16(2):171-4. doi: 10.1038/s41592-018-0294-6

We report an intensiometric, near-infrared fluorescent, genetically encoded calcium ion (Ca) indicator (GECI) with excitation and emission maxima at 678 and 704 nm, respectively. This GECI, designated NIR-GECO1, enables imaging of Ca transients in cultured mammalian cells and brain tissue with sensitivity comparable to that of currently available visible-wavelength GECIs. We demonstrate that NIR-GECO1 opens up new vistas for multicolor Ca imaging in combination with other optogenetic indicators and actuators.

View Publication Page
Looger Lab
02/12/19 | A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP.
Lobas MA, Tao R, Nagai J, Kronschläger MT, Borden PM, Marvin JS, Looger LL, Khakh BS
Nature Communications. 2019 Feb 12;10(1):711. doi: 10.1038/s41467-019-08441-5

Adenosine 5' triphosphate (ATP) is a universal intracellular energy source and an evolutionarily ancient, ubiquitous extracellular signal in diverse species. Here, we report the generation and characterization of single-wavelength genetically encoded fluorescent sensors (iATPSnFRs) for imaging extracellular and cytosolic ATP from insertion of circularly permuted superfolder GFP into the epsilon subunit of FF-ATPase from Bacillus PS3. On the cell surface and within the cytosol, iATPSnFR responds to relevant ATP concentrations (30 μM to 3 mM) with fast increases in fluorescence. iATPSnFRs can be genetically targeted to specific cell types and sub-cellular compartments, imaged with standard light microscopes, do not respond to other nucleotides and nucleosides, and when fused with a red fluorescent protein function as ratiometric indicators. After careful consideration of their modest pH sensitivity, iATPSnFRs represent promising reagents for imaging ATP in the extracellular space and within cells during a variety of settings, and for further application-specific refinements.

View Publication Page
Looger LabSchreiter Lab
11/01/11 | A genetically encoded, high-signal-to-noise maltose sensor.
Marvin JS, Schreiter ER, Echevarría IM, Looger LL
Proteins. 2011 Nov;79:3025-36. doi: 10.1002/prot.23118

We describe the generation of a family of high-signal-to-noise single-wavelength genetically encoded indicators for maltose. This was achieved by insertion of circularly permuted fluorescent proteins into a bacterial periplasmic binding protein (PBP), Escherichia coli maltodextrin-binding protein, resulting in a four-color family of maltose indicators. The sensors were iteratively optimized to have sufficient brightness and maltose-dependent fluorescence increases for imaging, under both one- and two-photon illumination. We demonstrate that maltose affinity of the sensors can be tuned in a fashion largely independent of the fluorescent readout mechanism. Using literature mutations, the binding specificity could be altered to moderate sucrose preference, but with a significant loss of affinity. We use the soluble sensors in individual E. coli bacteria to observe rapid maltose transport across the plasma membrane, and membrane fusion versions of the sensors on mammalian cells to visualize the addition of maltose to extracellular media. The PBP superfamily includes scaffolds specific for a number of analytes whose visualization would be critical to the reverse engineering of complex systems such as neural networks, biosynthetic pathways, and signal transduction cascades. We expect the methodology outlined here to be useful in the development of indicators for many such analytes.

View Publication Page
Sternson LabScheffer Lab
12/04/14 | A genetically specified connectomics approach applied to long-range feeding regulatory circuits.
Atasoy D, Betley JN, Li W, Su HH, Sertel SM, Scheffer LK, Simpson JH, Fetter RD, Sternson SM
Nature Neuroscience. 2014 Dec;17(12):1830-9. doi: 10.1038/nn.3854

Synaptic connectivity and molecular composition provide a blueprint for information processing in neural circuits. Detailed structural analysis of neural circuits requires nanometer resolution, which can be obtained with serial-section electron microscopy. However, this technique remains challenging for reconstructing molecularly defined synapses. We used a genetically encoded synaptic marker for electron microscopy (GESEM) based on intra-vesicular generation of electron-dense labeling in axonal boutons. This approach allowed the identification of synapses from Cre recombinase-expressing or GAL4-expressing neurons in the mouse and fly with excellent preservation of ultrastructure. We applied this tool to visualize long-range connectivity of AGRP and POMC neurons in the mouse, two molecularly defined hypothalamic populations that are important for feeding behavior. Combining selective ultrastructural reconstruction of neuropil with functional and viral circuit mapping, we characterized some basic features of circuit organization for axon projections of these cell types. Our findings demonstrate that GESEM labeling enables long-range connectomics with molecularly defined cell types.

View Publication Page
Fitzgerald Lab
06/29/22 | A geometric framework to predict structure from function in neural networks
Biswas T, Fitzgerald JE
Physical Review Research. 2022 Jun 29;4(2):023255. doi: 10.1103/PhysRevResearch.4.023255

Neural computation in biological and artificial networks relies on nonlinear synaptic integration. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function. However, quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of rectified-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. We then use this analytical characterization to rigorously analyze the solution space geometry and derive certainty conditions guaranteeing a non-zero synapse between neurons. Numerical simulations of feedforward and recurrent networks verify our analytical results. Our theoretical framework could be applied to neural activity data to make anatomical predictions that follow generally from the model architecture. It thus provides novel opportunities for discerning what model features are required to accurately relate neural network structure and function.

View Publication Page
10/24/14 | A giant fibre bypass for the fly.
Zwart M
Journal of Experimental Biology. 2014 Oct 24;217(17):2988-89. doi: 10.1242/​jeb.095000
11/05/24 | A global dopaminergic learning rate enables adaptive foraging across many options
Grima LL, Guo Y, Narayan L, Hermundstad AM, Dudman JT
bioRxiv. 2024 Nov 05:. doi: 10.1101/2024.11.04.621923

In natural environments, animals must efficiently allocate their choices across multiple concurrently available resources when foraging, a complex decision-making process not fully captured by existing models. To understand how rodents learn to navigate this challenge we developed a novel paradigm in which untrained, water-restricted mice were free to sample from six options rewarded at a range of deterministic intervals and positioned around the walls of a large ( 2m) arena. Mice exhibited rapid learning, matching their choices to integrated reward ratios across six options within the first session. A reinforcement learning model with separate states for staying or leaving an option and a dynamic, global learning rate was able to accurately reproduce mouse learning and decision-making. Fiber photometry recordings revealed that dopamine in the nucleus accumbens core (NAcC), but not dorsomedial striatum (DMS), more closely reflected the global learning rate than local error-based updating. Altogether, our results provide insight into the neural substrate of a learning algorithm that allows mice to rapidly exploit multiple options when foraging in large spatial environments.

View Publication Page
03/30/21 | A guide to accurate reporting in digital image processing - can anyone reproduce your quantitative analysis?
Aaron J, Chew T
Journal of Cell Science. 2021 Mar 30;134(6):. doi: 10.1242/jcs.254151

Considerable attention has been recently paid to improving replicability and reproducibility in life science research. This has resulted in commendable efforts to standardize a variety of reagents, assays, cell lines and other resources. However, given that microscopy is a dominant tool for biologists, comparatively little discussion has been offered regarding how the proper reporting and documentation of microscopy relevant details should be handled. Image processing is a critical step of almost any microscopy-based experiment; however, improper, or incomplete reporting of its use in the literature is pervasive. The chosen details of an image processing workflow can dramatically determine the outcome of subsequent analyses, and indeed, the overall conclusions of a study. This Review aims to illustrate how proper reporting of image processing methodology improves scientific reproducibility and strengthens the biological conclusions derived from the results.

View Publication Page