Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2529 Janelia Publications

Showing 1111-1120 of 2529 results
11/05/15 | Histone H3 threonine phosphorylation regulates asymmetric histone inheritance in the Drosophila male germline.
Xie J, Wooten M, Tran V, Chen B, Pozmanter C, Simbolon C, Betzig E, Chen X
Cell. 2015 Nov 5;163(4):920-33. doi: 10.1016/j.cell.2015.10.002

A long-standing question concerns how stem cells maintain their identity through multiple divisions. Previously, we reported that pre-existing and newly synthesized histone H3 are asymmetrically distributed during Drosophila male germline stem cell (GSC) asymmetric division. Here, we show that phosphorylation at threonine 3 of H3 (H3T3P) distinguishes pre-existing versus newly synthesized H3. Converting T3 to the unphosphorylatable residue alanine (H3T3A) or to the phosphomimetic aspartate (H3T3D) disrupts asymmetric H3 inheritance. Expression of H3T3A or H3T3D specifically in early-stage germline also leads to cellular defects, including GSC loss and germline tumors. Finally, compromising the activity of the H3T3 kinase Haspin enhances the H3T3A but suppresses the H3T3D phenotypes. These studies demonstrate that H3T3P distinguishes sister chromatids enriched with distinct pools of H3 in order to coordinate asymmetric segregation of "old" H3 into GSCs and that tight regulation of H3T3 phosphorylation is required for male germline activity.

View Publication Page
09/30/19 | Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis.
Sato Y, Hilbert L, Oda H, Wan Y, Heddleston JM, Chew T, Zaburdaev V, Keller P, Lionnet T, Vastenhouw N, Kimura H
Development. 2019 Sep 30;146(19):. doi: 10.1242/dev.179127

Histone post-translational modifications are key gene expression regulators, but their rapid dynamics during development remain difficult to capture. We applied a Fab-based live endogenous modification labeling technique to monitor the changes in histone modification levels during zygotic genome activation (ZGA) in living zebrafish embryos. Among various histone modifications, H3 Lys27 acetylation (H3K27ac) exhibited most drastic changes, accumulating in two nuclear foci in the 64- to 1k-cell-stage embryos. The elongating form of RNA polymerase II, which is phosphorylated at Ser2 in heptad repeats within the C-terminal domain (RNAP2 Ser2ph), and miR-430 transcripts were also concentrated in foci closely associated with H3K27ac. When treated with α-amanitin to inhibit transcription or JQ-1 to inhibit binding of acetyl-reader proteins, H3K27ac foci still appeared but RNAP2 Ser2ph and miR-430 morpholino were not concentrated in foci, suggesting that H3K27ac precedes active transcription during ZGA. We anticipate that the method presented here could be applied to a variety of developmental processes in any model and non-model organisms.

View Publication Page
04/27/24 | hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit
Robert A Carrillo , Yupu Wang , Rio Salazar , Luciano Simonetta , Violet Sorrentino , Terrence J Gatton , Bill Wu , Christopher G Vecsey
Communications Biology. 2024 Apr 27;7(507):. doi: 10.1038/s42003-024-06184-8

Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins (CSPs). In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth and cell survival. However, the upstream regulation and downstream signaling mechanisms of Dprs and DIPs are not clear. In the Drosophila larval neuromuscular system, DIP-α is expressed in the dorsal and ventral type-Is motor neurons (MNs). We conducted an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We found that the transcription factor, huckebein (hkb), genetically interacts with DIP-α and is important for target recognition specifically in the dorsal Is MN, but not the ventral Is MN. Loss of hkb led to complete removal of DIP-α expression. We then confirmed that this specificity is through the dorsal Is MN specific transcription factor, even-skipped (eve), which acts downstream of hkb. Genetic interaction between hkb and eve revealed that they act in the same pathway to regulate dorsal Is MN connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.

View Publication Page
05/05/15 | HMMER web server: 2015 update.
Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR
Nucleic Acids Research. 2015 May 5:. doi: 10.1093/nar/gkv397

The HMMER website, available at http://www.ebi.ac.uk/Tools/hmmer/, provides access to the protein homology search algorithms found in the HMMER software suite. Since the first release of the website in 2011, the search repertoire has been expanded to include the iterative search algorithm, jackhmmer. The continued growth of the target sequence databases means that traditional tabular representations of significant sequence hits can be overwhelming to the user. Consequently, additional ways of presenting homology search results have been developed, allowing them to be summarised according to taxonomic distribution or domain architecture. The taxonomy and domain architecture representations can be used in combination to filter the results according to the needs of a user. Searches can also be restricted prior to submission using a new taxonomic filter, which not only ensures that the results are specific to the requested taxonomic group, but also improves search performance. The repertoire of profile hidden Markov model libraries, which are used for annotation of query sequences with protein families and domains, has been expanded to include the libraries from CATH-Gene3D, PIRSF, Superfamily and TIGRFAMs. Finally, we discuss the relocation of the HMMER webserver to the European Bioinformatics Institute and the potential impact that this will have.

View Publication Page
Eddy/Rivas Lab
07/01/11 | HMMER web server: interactive sequence similarity searching.
Finn RD, Clements J, Eddy SR
Nucleic Acids Research. 2011 Jul;39:W29-37. doi: 10.1093/nar/gkr367

HMMER is a software suite for protein sequence similarity searches using probabilistic methods. Previously, HMMER has mainly been available only as a computationally intensive UNIX command-line tool, restricting its use. Recent advances in the software, HMMER3, have resulted in a 100-fold speed gain relative to previous versions. It is now feasible to make efficient profile hidden Markov model (profile HMM) searches via the web. A HMMER web server (http://hmmer.janelia.org) has been designed and implemented such that most protein database searches return within a few seconds. Methods are available for searching either a single protein sequence, multiple protein sequence alignment or profile HMM against a target sequence database, and for searching a protein sequence against Pfam. The web server is designed to cater to a range of different user expertise and accepts batch uploading of multiple queries at once. All search methods are also available as RESTful web services, thereby allowing them to be readily integrated as remotely executed tasks in locally scripted workflows. We have focused on minimizing search times and the ability to rapidly display tabular results, regardless of the number of matches found, developing graphical summaries of the search results to provide quick, intuitive appraisement of them.

View Publication Page
01/05/24 | Homeodomain proteins hierarchically specify neuronal diversity and synaptic connectivity
Chundi Xu , Tyler B. Ramos , Ed M. Rogers , Michael B. Reiser , Chris Q. Doe
eLife. 2024 Jan 05:. doi: 10.7554/eLife.90133

The brain generates diverse neuron types which express unique homeodomain transcription factors (TFs) and assemble into precise neural circuits. Yet a mechanistic framework is lacking for how homeodomain TFs specify both neuronal fate and synaptic connectivity. We use Drosophila lamina neurons (L1-L5) to show the homeodomain TF Brain-specific homeobox (Bsh) is initiated in lamina precursor cells (LPCs) where it specifies L4/L5 fate and suppresses homeodomain TF Zfh1 to prevent L1/L3 fate. Subsequently, Bsh activates the homeodomain TF Apterous (Ap) in L4 in a feedforward loop to express the synapse recognition molecule DIP-β, in part by Bsh direct binding a DIP-β intron. Thus, homeodomain TFs function hierarchically: primary homeodomain TF (Bsh) first specifies neuronal fate, and subsequently acts with secondary homeodomain TF (Ap) to activate DIP-β, thereby generating precise synaptic connectivity. We speculate that hierarchical homeodomain TF function may represent a general principle for coordinating neuronal fate specification and circuit assembly.

View Publication Page
Eddy/Rivas Lab
04/01/15 | Homology searches for structural RNAs: from proof of principle to practical use.
Eddy SR
RNA. 2015 Apr;21(4):605-7. doi: 10.1261/rna.050484.115
06/26/18 | Honeybee detection and pose estimation using convolutional neural networks.
Rodriguez IF, Branson KM, Acuna E, Agosto-Rivera J, Giray T, Megret R
RFIAP 2018. 2018 Jun 26:

The ability to automatize the analysis of video for monitoring animals and insects is of great interest for behavior science and ecology [1]. In particular, honeybees play a crucial role in agriculture as natural pollinators. However, recent studies has shown that phenomena such as colony collapse disorder are causing the loss of many colonies [2]. Due to the high number of interacting factors to explain these events, a multi-faceted analysis of the bees in their environment is required. We focus in our work in developing tools to help model and understand their behavior as individuals, in relation with the health and performance of the colony.

In this paper, we report the development of a new system for the detection, locali- zation and tracking of honeybee body parts from video on the entrance ramp of the colony. The proposed system builds on the recent advances in Convolutional Neu- ral Networks (CNN) for Human pose estimation and evaluates the suitability for the detection of honeybee pose as shown in Figure 1. This opens the door for novel animal behavior analysis systems that take advantage of the precise detection and tracking of the insect pose. 

View Publication Page
05/23/22 | Hormone-controlled changes in the differentiation state of post-mitotic neurons.
Lai Y, Miyares RL, Liu L, Chu S, Lee T, Yu H
Current Biology. 2022 May 23;32(10):2341-2348. doi: 10.1016/j.cub.2022.04.027

While we think of neurons as having a fixed identity, many show spectacular plasticity. Metamorphosis drives massive changes in the fly brain; neurons that persist into adulthood often change in response to the steroid hormone ecdysone. Besides driving remodeling, ecdysone signaling can also alter the differentiation status of neurons. The three sequentially born subtypes of mushroom body (MB) Kenyon cells (γ, followed by α'/β', and finally α/β) serve as a model of temporal fating. γ neurons are also used as a model of remodeling during metamorphosis. As γ neurons are the only functional Kenyon cells in the larval brain, they serve the function of all three adult subtypes. Correspondingly, larval γ neurons have a similar morphology to α'/β' and α/β neurons-their axons project dorsally and medially. During metamorphosis, γ neurons remodel to form a single medial projection. Both temporal fate changes and defects in remodeling therefore alter γ-neuron morphology in similar ways. Mamo, a broad-complex, tramtrack, and bric-à-brac/poxvirus and zinc finger (BTB/POZ) transcription factor critical for temporal specification of α'/β' neurons, was recently described as essential for γ remodeling. In a previous study, we noticed a change in the number of adult Kenyon cells expressing γ-specific markers when mamo was manipulated. These data implied a role for Mamo in γ-neuron fate specification, yet mamo is not expressed in γ neurons until pupariation, well past γ specification. This indicates that mamo has a later role in ensuring that γ neurons express the correct Kenyon cell subtype-specific genes in the adult brain.

View Publication Page
05/04/24 | Host ZCCHC3 blocks HIV-1 infection and production by a dual mechanism
Binbin Yi , Yuri L Tanaka , Hidetaka Kosako , Erika P Butlertanaka , Prabuddha Sengupta , Jennifer Lippincott-Schwartz , Akatsuki Saito , Shige H. Yoshimura
iScience. 05/2024:. doi: 10.1101/2023.06.14.544911

Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. While anti-human immunodeficiency virus type 1 (HIV-1) host restriction factors have been identified, most of them are antagonized by viral proteins. This has severely hindered their development in anti-HIV-1 therapy. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel anti-HIV-1 factor that is not antagonized by viral proteins. ZCCHC3 suppresses production of HIV-1 and other retroviruses. We show that ZCCHC3 acts by binding to Gag nucleocapsid protein via zinc-finger motifs. This prevents interaction between the Gag nucleocapsid protein and viral genome and results in production of genome-deficient virions. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. Such a dual antiviral mechanism is distinct from that of any other known host restriction factors. Therefore, ZCCHC3 is a novel potential target in anti-HIV-1 therapy.

View Publication Page