Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2529 Janelia Publications

Showing 1321-1330 of 2529 results
08/21/24 | Learning reshapes the hippocampal representation hierarchy
Chiossi HS, Nardin M, Tkačik G, Csicsvari JL
bioRxiv. 2024 Aug 21:. doi: 10.1101/2024.08.21.608911

A key feature of biological and artificial neural networks is the progressive refinement of their neural representations with experience. In neuroscience, this fact has inspired several recent studies in sensory and motor systems. However, less is known about how higher associational cortical areas, such as the hippocampus, modify representations throughout the learning of complex tasks. Here we focus on associative learning, a process that requires forming a connection between the representations of different variables for appropriate behavioral response. We trained rats in a spatial-context associative task and monitored hippocampal neural activity throughout the entire learning period, over several days. This allowed us to assess changes in the representations of context, movement direction and position, as well as their relationship to behavior. We identified a hierarchical representational structure in the encoding of these three task variables that was preserved throughout learning. Nevertheless, we also observed changes at the lower levels of the hierarchy where context was encoded. These changes were local in neural activity space and restricted to physical positions where context identification was necessary for correct decision making, supporting better context decoding and contextual code compression. Our results demonstrate that the hippocampal code not only accommodates hierarchical relationships between different variables but also enables efficient learning through minimal changes in neural activity space. Beyond the hippocampus, our work reveals a representation learning mechanism that might be implemented in other biological and artificial networks performing similar tasks.

View Publication Page
01/01/11 | Learning to agglomerate superpixel hierarchies.
Jain V, Turaga S, Briggman K, Helmstaedter MN, Denk W, Seung S
Neural Information Processing Systems. 2011;24:648-56

An agglomerative clustering algorithm merges the most similar pair of clusters at every iteration. The function that evaluates similarity is traditionally handdesigned, but there has been recent interest in supervised or semisupervised settings in which ground-truth clustered data is available for training. Here we show how to train a similarity function by regarding it as the action-value function of a reinforcement learning problem. We apply this general method to segment images by clustering superpixels, an application that we call Learning to Agglomerate Superpixel Hierarchies (LASH). When applied to a challenging dataset of brain images from serial electron microscopy, LASH dramatically improved segmentation accuracy when clustering supervoxels generated by state of the boundary detection algorithms. The naive strategy of directly training only supervoxel similarities and applying single linkage clustering produced less improvement.

View Publication Page
Darshan Lab
04/05/22 | Learning to represent continuous variables in heterogeneous neural networks
Ran Darshan , Alexander Rivkind
Cell Reports. 2022 Apr 05;39(1):110612. doi: 10.1016/j.celrep.2022.110612

Manifold attractors are a key framework for understanding how continuous variables, such as position or head direction, are encoded in the brain. In this framework, the variable is represented along a continuum of persistent neuronal states which forms a manifold attactor. Neural networks with symmetric synaptic connectivity that can implement manifold attractors have become the dominant model in this framework. In addition to a symmetric connectome, these networks imply homogeneity of individual-neuron tuning curves and symmetry of the representational space; these features are largely inconsistent with neurobiological data. Here, we developed a theory for computations based on manifold attractors in trained neural networks and show how these manifolds can cope with diverse neuronal responses, imperfections in the geometry of the manifold and a high level of synaptic heterogeneity. In such heterogeneous trained networks, a continuous representational space emerges from a small set of stimuli used for training. Furthermore, we find that the network response to external inputs depends on the geometry of the representation and on the level of synaptic heterogeneity in an analytically tractable and interpretable way. Finally, we show that a too complex geometry of the neuronal representation impairs the attractiveness of the manifold and may lead to its destabilization. Our framework reveals that continuous features can be represented in the recurrent dynamics of heterogeneous networks without assuming unrealistic symmetry. It suggests that the representational space of putative manifold attractors in the brain dictates the dynamics in their vicinity.

View Publication Page
Svoboda Lab
04/22/10 | Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice.
Komiyama T, Sato TR, O’Connor DH, Zhang Y, Huber D, Hooks BM, Gabitto M, Svoboda K
Nature. 2010 Apr 22;464(7292):1182-6. doi: 10.1038/nature08897

Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.

View Publication Page
04/12/24 | Leptin Activated Hypothalamic BNC2 Neurons Acutely Suppress Food Intake
Han L. Tan , Luping Yin , Yuqi Tan , Jessica Ivanov , Kaja Plucinska , Anoj Ilanges , Brian R. Herb , Putianqi Wang , Christin Kosse , Paul Cohen , Dayu Lin , Jeffrey M. Friedman
bioRxiv. 12 Apr 2024:. doi: 10.1101/2024.01.25.577315

Leptin is an adipose tissue hormone that maintains homeostatic control of adipose tissue mass by regulating the activity of specific neural populations controlling appetite and metabolism1. Leptin regulates food intake by inhibiting orexigenic agouti-related protein (AGRP) neurons and activating anorexigenic pro-opiomelanocortin (POMC) neurons2. However, while AGRP neurons regulate food intake on a rapid time scale, acute activation of POMC neurons has only a minimal effect3–5. This has raised the possibility that there is a heretofore unidentified leptin-regulated neural population that suppresses appetite on a rapid time scale. Here, we report the discovery of a novel population of leptin-target neurons expressing basonuclin 2 (Bnc2) that acutely suppress appetite by directly inhibiting AGRP neurons. Opposite to the effect of AGRP activation, BNC2 neuronal activation elicited a place preference indicative of positive valence in hungry but not fed mice. The activity of BNC2 neurons is finely tuned by leptin, sensory food cues, and nutritional status. Finally, deleting leptin receptors in BNC2 neurons caused marked hyperphagia and obesity, similar to that observed in a leptin receptor knockout in AGRP neurons. These data indicate that BNC2-expressing neurons are a key component of the neural circuit that maintains energy balance, thus filling an important gap in our understanding of the regulation of food intake and leptin action.

View Publication Page
Sternson Lab
12/04/14 | Leptin mediates the increase in blood pressure associated with obesity.
Simonds SE, Pryor JT, Ravussin E, Greenway FL, Dileone R, Allen AM, Bassi J, Elmquist JK, Keogh JM, Henning E, Myers MG, Licinio J, Brown RD, Enriori PJ, O'Rahilly S, Sternson SM, Grove KL, Spanswick DC, Farooqi IS, Cowley MA
Cell. 2014 Dec 4;159(6):1404-16. doi: 10.1016/j.cell.2014.10.058

Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species.

View Publication Page
09/30/09 | Lessons from a compartmental model of a Drosophila neuron.
Tuthill JC
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2009 Sep 30;29(39):12033-4. doi: 10.1523/JNEUROSCI.3348-09.2009

Although the vinegar fly, Drosophila melanogaster, has been a biological model organism for over a century, its emergence as a model system for the study of neurophysiology is comparatively recent. The primary reason for this is that the vinegar fly and its neurons are tiny; up until 5 years ago, it was prohibitively difficult to record intracellularly from individual neurons in the intact Drosophila brain (Wilson et al., 2004). Today, fly electrophysiologists can genetically label neurons with GFP and reliably record from many (but not all) neurons in the fruit fly brain. Using genetic tools to drive expression of fluorescent calcium indicators, light-sensitive ion channels, or cell activity suppressors, we are beginning to understand how the external environment is represented with electrical potentials in Drosophila neurons (for review, see Olsen and Wilson, 2008).

View Publication Page
01/20/14 | Lessons from the neurons themselves.
Scheffer L
Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific. 2014 Jan 20-23:197-200. doi: 10.1109/ASPDAC.2014.6742889

Natural neural circuits, optimized by millions of years of evolution, are fast, low power, robust, and adapt in response to experience, all characteristics we would love to have in systems we ourselves design. Recently there have been enormous advances in understanding how neurons implement computations within the brain of living creatures. Can we use this new-found knowledge to create better artificial system? What lessons can we learn from the neurons themselves, that can help us create better neuromorphic circuits?

View Publication Page
11/03/21 | Light sheet fluorescence microscopy.
Stelzer EH, Strobl F, Chang B, Preusser F, Preibisch S, McDole K, Fiolka R
Nature Reviews Methods Primers. 2021 Nov 03;1(1):. doi: 10.1038/s43586-021-00069-4

Light sheet fluorescence microscopy (LSFM) uses a thin sheet of light to excite only fluorophores within the focal volume. Light sheet microscopes (LSMs) have a true optical sectioning capability and, hence, provide axial resolution, restrict photobleaching and phototoxicity to a fraction of the sample and use cameras to record tens to thousands of images per second. LSMs are used for in-depth analyses of large, optically cleared samples and long-term three-dimensional (3D) observations of live biological specimens at high spatio-temporal resolution. The independently operated illumination and detection trains and the canonical implementations, selective/single plane illumination microscope (SPIM) and digital scanned laser microscope (DSLM), are the basis for many LSM designs. In this Primer, we discuss various applications of LSFM for imaging multicellular specimens, developing vertebrate and invertebrate embryos, brain and heart function, 3D cell culture models, single cells, tissue sections, plants, organismic interaction and entire cleared brains. Further, we describe the combination of LSFM with other imaging approaches to allow for super-resolution or increased penetration depth and the use of sophisticated spatio-temporal manipulations to allow for observations along multiple directions. Finally, we anticipate developments of the field in the near future.

View Publication Page
10/07/16 | Light sheet microscopes: Novel imaging toolbox for visualizing life's processes.
Heddleston JM, Chew T
The International Journal of Biochemistry & Cell Biology. 2016 Oct 7:. doi: 10.1016/j.biocel.2016.10.002

Capturing dynamic processes in live samples is a nontrivial task in biological imaging. Although fluorescence provides high specificity and contrast compared to other light microscopy techniques, the photophysical principles of this method can have a harmful effect on the sample. Current advances in light sheet microscopy have created a novel imaging toolbox that allows for rapid acquisition of high-resolution fluorescent images with minimal perturbation of the processes of interest. Each unique design has its own advantages and limitations. In this review, we describe several cutting edge light sheet microscopes and their optimal applications.

View Publication Page