Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2773 Janelia Publications

Showing 1381-1390 of 2773 results
Singer Lab
10/24/17 | Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells.
Haimovich G, Ecker CM, Dunagin MC, Eggan E, Raj A, Gerst JE, Singer RH
Proceedings of the National Academy of Sciences of the United States of America. 2017 Oct 24;114(46):E9873-E9882. doi: 10.1073/pnas.1706365114

RNAs have been shown to undergo transfer between mammalian cells, although the mechanism behind this phenomenon and its overall importance to cell physiology is not well understood. Numerous publications have suggested that RNAs (microRNAs and incomplete mRNAs) undergo transfer via extracellular vesicles (e.g., exosomes). However, in contrast to a diffusion-based transfer mechanism, we find that full-length mRNAs undergo direct cell-cell transfer via cytoplasmic extensions characteristic of membrane nanotubes (mNTs), which connect donor and acceptor cells. By employing a simple coculture experimental model and using single-molecule imaging, we provide quantitative data showing that mRNAs are transferred between cells in contact. Examples of mRNAs that undergo transfer include those encoding GFP, mouse β-actin, and human Cyclin D1, BRCA1, MT2A, and HER2. We show that intercellular mRNA transfer occurs in all coculture models tested (e.g., between primary cells, immortalized cells, and in cocultures of immortalized human and murine cells). Rapid mRNA transfer is dependent upon actin but is independent of de novo protein synthesis and is modulated by stress conditions and gene-expression levels. Hence, this work supports the hypothesis that full-length mRNAs undergo transfer between cells through a refined structural connection. Importantly, unlike the transfer of miRNA or RNA fragments, this process of communication transfers genetic information that could potentially alter the acceptor cell proteome. This phenomenon may prove important for the proper development and functioning of tissues as well as for host-parasite or symbiotic interactions.

View Publication Page
03/22/19 | Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells.
Tamzalit F, Wang MS, Jin W, Tello-Lafoz M, Boyko V, Heddleston JM, Black CT, Kam LC, Huse M
Science Immunology. 2019 Mar 22;4(33):. doi: 10.1126/sciimmunol.aav5445

Cytotoxic T lymphocytes (CTLs) kill by forming immunological synapses with target cells and secreting toxic proteases and the pore-forming protein perforin into the intercellular space. Immunological synapses are highly dynamic structures that boost perforin activity by applying mechanical force against the target cell. Here, we used high-resolution imaging and microfabrication to investigate how CTLs exert synaptic forces and coordinate their mechanical output with perforin secretion. Using micropatterned stimulatory substrates that enable synapse growth in three dimensions, we found that perforin release occurs at the base of actin-rich protrusions that extend from central and intermediate locations within the synapse. These protrusions, which depended on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, were required for synaptic force exertion and efficient killing. They also mediated physical deformation of the target cell surface during CTL-target cell interactions. Our results reveal the mechanical basis of cellular cytotoxicity and highlight the functional importance of dynamic, three-dimensional architecture in immune cell-cell interfaces.

View Publication Page
06/01/12 | Interferometer-based structured-illumination microscopy utilizing complementary phase relationship through constructive and destructive image detection by two cameras.
Shao L, Winoto L, Agard DA, Gustafsson MG, Sedat JW
Journal of Microscopy. 2012 Jun;246:229-36. doi: 10.1111/j.1365-2818.2012.03604.x

In an interferometer-based fluorescence microscope, a beam splitter is often used to combine two emission wavefronts interferometrically. There are two perpendicular paths along which the interference fringes can propagate and normally only one is used for imaging. However, the other path also contains useful information. Here we introduced a second camera to our interferometer-based three-dimensional structured-illumination microscope (I(5)S) to capture the fringes along the normally unused path, which are out of phase by π relative to the fringes along the other path. Based on this complementary phase relationship and the well-defined phase interrelationships among the I(5)S data components, we can deduce and then computationally eliminate the path length errors within the interferometer loop using the simultaneously recorded fringes along the two imaging paths. This self-correction capability can greatly relax the requirement for eliminating the path length differences before and maintaining that status during each imaging session, which are practically challenging tasks. Experimental data is shown to support the theory.

View Publication Page
Hess LabFetter Lab
03/03/09 | Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.
Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF
Proceedings of the National Academy of Sciences of the United States of America. 2009 Mar 3;106:3125-30. doi: 10.1073/pnas.0813131106

Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. We demonstrate measurement of the 25-nm microtubule diameter, resolve the dorsal and ventral plasma membranes, and visualize the arrangement of integrin receptors within endoplasmic reticulum and adhesion complexes, 3D protein organization previously resolved only by electron microscopy. iPALM thus closes the gap between electron tomography and light microscopy, enabling both molecular specification and resolution of cellular nanoarchitecture.

View Publication Page
12/18/18 | Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape.
Chorro L, Suzuki M, Chin SS, Williams TM, Snapp EL, Odagiu L, Labrecque N, Lauvau G
Nature Communications. 2018 Dec 18;9(1):5368. doi: 10.1038/s41467-018-07806-6

Foxp3CD4 regulatory T (T) cells are essential for preventing fatal autoimmunity and safeguard immune homeostasis in vivo. While expression of the transcription factor Foxp3 and IL-2 signals are both required for the development and function of T cells, the commitment to the T cell lineage occurs during thymic selection upon T cell receptor (TCR) triggering, and precedes the expression of Foxp3. Whether signals beside TCR contribute to establish T cell epigenetic and functional identity is still unknown. Here, using a mouse model with reduced IL-2 signaling, we show that IL-2 regulates the positioning of the pioneer factor SATB1 in CD4 thymocytes and controls genome wide chromatin accessibility of thymic-derived T cells. We also show that T cells receiving only low IL-2 signals can suppress endogenous but not WT autoreactive T cell responses in vitro and in vivo. Our findings have broad implications for potential therapeutic strategies to reprogram T cells in vivo.

View Publication Page
12/10/14 | Internal models direct dragonfly interception steering.
Mischiati M, Lin H, Herold P, Imler E, Olberg R, Leonardo A
Nature. 2014 Dec 10:. doi: 10.1038/nature14045

Sensorimotor control in vertebrates relies on internal models. When extending an arm to reach for an object, the brain uses predictive models of both limb dynamics and target properties. Whether invertebrates use such models remains unclear. Here we examine to what extent prey interception by dragonflies (Plathemis lydia), a behaviour analogous to targeted reaching, requires internal models. By simultaneously tracking the position and orientation of a dragonfly's head and body during flight, we provide evidence that interception steering is driven by forward and inverse models of dragonfly body dynamics and by models of prey motion. Predictive rotations of the dragonfly's head continuously track the prey's angular position. The head-body angles established by prey tracking appear to guide systematic rotations of the dragonfly's body to align it with the prey's flight path. Model-driven control thus underlies the bulk of interception steering manoeuvres, while vision is used for reactions to unexpected prey movements. These findings illuminate the computational sophistication with which insects construct behaviour.

View Publication Page
11/29/21 | Internal Models in Control, Bioengineering, and Neuroscience
Bin M, Huang J, Isidori A, Marconi L, Mischiati M, Sontag E
Annual Review of Control, Robotics, and Autonomous Systems. 2021 Nov 29;5(1):. doi: 10.1146/control.2022.5.issue-110.1146/annurev-control-042920-102205

Internal models are nowadays customarily used in different domains of science and engineering to describe how living organisms or artificial computational units embed their acquired knowledge about recurring events taking place in the surrounding environment. This article reviews the internal model principle in control theory, bioengineering, and neuroscience, illustrating the fundamental concepts and theoretical developments of the few last decades of research.

View Publication Page
01/21/19 | Internal models in control, biology and neuroscience.
Huang J, Isidori A, Marconi L, Mischiati M, Sontag E, Wonham WM
2018 IEEE Conference on Decision and Control (CDC). 2019 Jan 21:. doi: 10.1109/CDC.2018.8619624

This tutorial paper deals with the Internal Model Principle (IMP) from different perspectives. The goal is to start from the principle as introduced and commonly used in the control theory and then enlarge the vision to other fields where “internal models” play a role. The biology and neuroscience fields are specifically targeted in the paper. The paper ends by presenting an “abstract” theory of IMP applicable to a large class of systems.

View Publication Page
Cardona Lab
01/01/21 | Internal state configures olfactory behavior and early sensory processing in larvae.
Vogt K, Zimmerman DM, Schlichting M, Hernandez-Nunez L, Qin S, Malacon K, Rosbash M, Pehlevan C, Cardona A, Samuel AD
Science Advances. 2021 Jan 01;7(1):. doi: 10.1126/sciadv.abd6900

Animals exhibit different behavioral responses to the same sensory cue depending on their internal state at a given moment. How and where in the brain are sensory inputs combined with state information to select an appropriate behavior? Here, we investigate how food deprivation affects olfactory behavior in larvae. We find that certain odors repel well-fed animals but attract food-deprived animals and that feeding state flexibly alters neural processing in the first olfactory center, the antennal lobe. Hunger differentially modulates two output pathways required for opposing behavioral responses. Upon food deprivation, attraction-mediating uniglomerular projection neurons show elevated odor-evoked activity, whereas an aversion-mediating multiglomerular projection neuron receives odor-evoked inhibition. The switch between these two pathways is regulated by the lone serotonergic neuron in the antennal lobe, CSD. Our findings demonstrate how flexible behaviors can arise from state-dependent circuit dynamics in an early sensory processing center.

View Publication Page
02/03/16 | Intracellular and extracellular forces drive primary cilia movement.
Battle C, Ott CM, Burnette DT, Lippincott-Schwartz J, Schmidt CF
Proceedings of the National Academy of Sciences of the United States of America. 2015 Feb 3;112(5):1410-5. doi: 10.1073/pnas.1421845112

Primary cilia are ubiquitous, microtubule-based organelles that play diverse roles in sensory transduction in many eukaryotic cells. They interrogate the cellular environment through chemosensing, osmosensing, and mechanosensing using receptors and ion channels in the ciliary membrane. Little is known about the mechanical and structural properties of the cilium and how these properties contribute to ciliary perception. We probed the mechanical responses of primary cilia from kidney epithelial cells [Madin-Darby canine kidney-II (MDCK-II)], which sense fluid flow in renal ducts. We found that, on manipulation with an optical trap, cilia deflect by bending along their length and pivoting around an effective hinge located below the basal body. The calculated bending rigidity indicates weak microtubule doublet coupling. Primary cilia of MDCK cells lack interdoublet dynein motors. Nevertheless, we found that the organelles display active motility. 3D tracking showed correlated fluctuations of the cilium and basal body. These angular movements seemed random but were dependent on ATP and cytoplasmic myosin-II in the cell cortex. We conclude that force generation by the actin cytoskeleton surrounding the basal body results in active ciliary movement. We speculate that actin-driven ciliary movement might tune and calibrate ciliary sensory functions.

View Publication Page