Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2762 Janelia Publications

Showing 1421-1430 of 2762 results
07/29/19 | Kilohertz frame-rate two-photon tomography.
Kazemipour A, Novak O, Flickinger D, Marvin JS, Abdelfattah AS, King J, Borden P, Kim J, Al-Abdullatif S, Deal P, Miller E, Schreiter E, Druckmann S, Svoboda K, Looger L, Podgorski K
Nature Methods. 2019 Jul 29;16(8):778-86. doi: 10.1101/357269

Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits imaging speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and uses prior information to recover high-resolution images at over 1.4 billion voxels per second. Using a structural image as a prior for recording neural activity, we imaged visually-evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 microns and frame-rates over 1 kHz. Dendritic glutamate transients in anaesthetized mice are synchronized within spatially-contiguous domains spanning tens of microns at frequencies ranging from 1-100 Hz. We demonstrate high-speed recording of acetylcholine and calcium sensors, 3D single-particle tracking, and imaging in densely-labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.

View Publication Page
02/06/19 | Kilohertz in vivo imaging of neural activity.
Jianglai Wu , Yajie liang , Ching-Lung Hsu , Mariya Chavarha , Stephen Evans , Dongqing Shi , Michael Lin , Kevin Tsia , Na Ji
bioRxiv. 2019 Feb 06:. doi: 10.1101/543058

Understanding information processing in the brain requires us to monitor neural activity in vivo at high spatiotemporal resolution. Using an ultrafast two-photon fluorescence microscope (2PFM) empowered by all-optical laser scanning, we imaged neural activity in vivo at 1,000 frames per second and submicron spatial resolution. This ultrafast imaging method enabled monitoring of electrical activity down to 300 μm below the brain surface in head fixed awake mice.

View Publication Page
03/02/20 | Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo.
Wu J, Liang Y, Chen S, Hsu C, Chavarha M, Evans SW, Shi D, Lin MZ, Tsia KK, Ji N
Nature Methods. 2020 Mar 02;17(3):287-290. doi: 10.1038/s41592-020-0762-7

Understanding information processing in the brain requires monitoring neuronal activity at high spatiotemporal resolution. Using an ultrafast two-photon fluorescence microscope empowered by all-optical laser scanning, we imaged neuronal activity in vivo at up to 3,000 frames per second and submicrometer spatial resolution. This imaging method enabled monitoring of both supra- and subthreshold electrical activity down to 345 μm below the brain surface in head-fixed awake mice.

View Publication Page
07/01/22 | Kinetic principles underlying pioneer function of GAGA transcription factor in live cells.
Tang X, Li T, Liu S, Wisniewski J, Zheng Q, Rong Y, Lavis LD, Wu C
Nature Structural and Molecular Biology. 2022 Jul 01;29(7):665-676. doi: 10.1038/s41594-022-00800-z

How pioneer factors interface with chromatin to promote accessibility for transcription control is poorly understood in vivo. Here, we directly visualize chromatin association by the prototypical GAGA pioneer factor (GAF) in live Drosophila hemocytes. Single-particle tracking reveals that most GAF is chromatin bound, with a stable-binding fraction showing nucleosome-like confinement residing on chromatin for more than 2 min, far longer than the dynamic range of most transcription factors. These kinetic properties require the full complement of GAF's DNA-binding, multimerization and intrinsically disordered domains, and are autonomous from recruited chromatin remodelers NURF and PBAP, whose activities primarily benefit GAF's neighbors such as Heat Shock Factor. Evaluation of GAF kinetics together with its endogenous abundance indicates that, despite on-off dynamics, GAF constitutively and fully occupies major chromatin targets, thereby providing a temporal mechanism that sustains open chromatin for transcriptional responses to homeostatic, environmental and developmental signals.

View Publication Page
01/22/24 | KMT2 family of H3K4 methyltransferases: enzymatic activity-dependent and -independent functions.
Van HT, Xie G, Dong P, Liu Z, Ge K
Journal of Molecular Biology. 2024 Jan 22:168453. doi: 10.1016/j.jmb.2024.168453

Histone-lysine N-methyltransferase 2 (KMT2) methyltransferases play critical roles in gene regulation, cell differentiation, animal development, and human diseases. KMT2 biological roles are often attributed to their methyltransferase activities on lysine 4 of histone H3 (H3K4). However, recent data indicate that KMT2 proteins also possess non-enzymatic functions. In this review, we discuss the current understanding of KMT2 family, with a focus on their enzymatic activity-dependent and -independent functions. Six mammalian KMT2 proteins of three subgroups, KMT2A/B (MLL1/2), KMT2C/D (MLL3/4), and KMT2F/G (SETD1A/B or SET1A/B), have shared and distinct protein domains, catalytic substrates, genomic localizations, and associated complex subunits. Recent studies have revealed the central role of KMT2C/D in enhancer regulation, differentiation, and development and have highlighted KMT2C/D enzymatic activity-dependent and independent roles in mouse embryonic development and cell differentiation. Catalytic dependent and independent roles for KMT2A/B and KMT2F/G in gene regulation, differentiation, and development are less understood. Finally, we provide our perspectives and lay out future research directions that may help advance the investigation on enzymatic activity-dependent and -independent biological roles and working mechanisms of KMT2 methyltransferases.

View Publication Page
08/07/18 | Knock-in rats expressing Cre and Flp recombinases at the Parvalbumin locus.
Jai Y. Yu , Jeffrey R. Pettibone , Caiying Guo , Shuqin Zhang , Thomas L. Saunders , Elizabeth D. Hughes , Wanda E. Filipiak , Michael G. Zeidler , Kevin J. Bender , Frederic Hopf , Clay N. Smyth , Viktor Kharazia , Anna Kiseleva , Thomas J. Davidson , Loren M. Frank , Joshua D. Berke
bioRxiv. 2018 Aug 07:. doi: 10.1101/386474

Rats have the ability to learn and perform sophisticated behavioral tasks, making them very useful for investigating neural circuit functions. In contrast to the extensive mouse genetic toolkit, the paucity of recombinase-expressing rat models has limited the ability to monitor and manipulate molecularly-defined neural populations in this species. Here we report the generation and validation of two knock-in rat strains expressing either Cre or Flp recombinase under the control of Parvalbumin (Pvalb), a gene expressed in the critical “fast-spiking” subset of inhibitory interneurons (FSIs). These strains were generated with CRISPR-Cas9 gene editing and show highly specific and penetrant labeling of Pvalb-expressing neurons, as demonstrated by in situ hybridization and immunohistochemistry. We validated these models in both prefrontal cortex and striatum using both ex vivo and in vivo approaches, including whole-cell recording, optogenetics, extracellular physiology and photometry. Our results demonstrate the utility of these new transgenic models for a wide range of neuroscience experiments.

View Publication Page
Ji Lab
04/27/15 | Label-free spectroscopic detection of membrane potential using stimulated Raman scattering.
Liu B, Lee HJ, Zhang D, Liao C, Ji N, Xia Y, Cheng J
Applied Physics Letters. 2015 Apr 27;106:173704. doi: 10.1063/1.4919104

Hyperspectral stimulated Raman scattering microscopy is deployed to measure single-membrane vibrational spectrum as a function of membrane potential. Using erythrocyte ghost as a model, quantitative correlation between transmembrane potential and Raman spectral profile was found. Specifically, the ratio between the area under Raman band at ∼2930 cm−1 and that at ∼2850 cm−1 increased by ∼2.6 times when the potential across the erythrocyte ghost membrane varied from +10 mV to −10 mV. Our results show the feasibility of employing stimulated Raman scattering microscopy to probe the membrane potential without labeling.

View Publication Page
11/03/16 | Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins.
Mohr MA, Argast P, Pantazis P
Nature Protocols. 2016 Dec;11(12):2419-2431. doi: 10.1038/nprot.2016.134

The application of green-to-red photoconvertible fluorescent proteins (PCFPs) for in vivo studies in complex 3D tissue structures has remained limited because traditional near-UV photoconversion is not confined in the axial dimension, and photomodulation using axially confined, pulsed near-IR (NIR) lasers has proven inefficient. Confined primed conversion is a dual-wavelength continuous-wave (CW) illumination method that is capable of axially confined green-to-red photoconversion. Here we present a protocol to implement this technique with a commercial confocal laser-scanning microscope (CLSM); evaluate its performance on an in vitro setup; and apply primed conversion for in vivo labeling of single cells in developing zebrafish and mouse preimplantation embryos expressing the green-to-red photoconvertible protein Dendra2. The implementation requires a basic understanding of laser-scanning microscopy, and it can be performed within a single day once the required filter cube is manufactured.

View Publication Page
02/13/15 | Labeling of active neural circuits in vivo with designed calcium integrators.
Fosque BF, Sun Y, Dana H, Yang C, Ohyama T, Tadross MR, Patel R, Zlatic M, Kim DS, Ahrens MB, Jayaraman V, Looger LL, Schreiter ER
Science. 2015 Feb 13;347(6223):755-60. doi: 10.1126/science.1260922

The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies.

View Publication Page
10/27/23 | Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging.
Nasu Y, Aggarwal A, Le GN, Vo CT, Kambe Y, Wang X, Beinlich FR, Lee AB, Ram TR, Wang F, Gorzo KA, Kamijo Y, Boisvert M, Nishinami S, Kawamura G, Ozawa T, Toda H, Gordon GR, Ge S, Hirase H, Nedergaard M, Paquet M, Drobizhev M, Podgorski K, Campbell RE
Nature Communications. 2023 Oct 27;14(1):6598. doi: 10.1038/s41467-023-42230-5

L-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.1, and a red fluorescent intracellular L-lactate biosensor, designated R-iLACCO1. eLACCO2.1 exhibits excellent membrane localization and robust fluorescence response. To the best of our knowledge, R-iLACCO1 and its affinity variants exhibit larger fluorescence responses than any previously reported intracellular L-lactate biosensor. We demonstrate spectrally and spatially multiplexed imaging of L-lactate dynamics by coexpression of eLACCO2.1 and R-iLACCO1 in cultured cells, and in vivo imaging of extracellular and intracellular L-lactate dynamics in mice.

View Publication Page