Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2800 Janelia Publications

Showing 1461-1470 of 2800 results
03/10/20 | Layer 6b Is driven by intracortical long-range projection neurons.
Zolnik TA, Ledderose J, Toumazou M, Trimbuch T, Oram T, Rosenmund C, Eickholt BJ, Sachdev RN, Larkum ME
Cell Reports. 2020 Mar 10;30(10):3492 - 3505.e5. doi: 10.1016/j.celrep.2020.02.044

Layer 6b (L6b), the deepest neocortical layer, projects to cortical targets and higher-order thalamus and is the only layer responsive to the wake-promoting neuropeptide orexin/hypocretin. These characteristics suggest that L6b can strongly modulate brain state, but projections to L6b and their influence remain unknown. Here, we examine the inputs to L6b ex vivo in the mouse primary somatosensory cortex with rabies-based retrograde tracing and channelrhodopsin-assisted circuit mapping in brain slices. We find that L6b receives its strongest excitatory input from intracortical long-range projection neurons, including those in the contralateral hemisphere. In contrast, local intracortical input and thalamocortical input were significantly weaker. Moreover, our data suggest that L6b receives far less thalamocortical input than other cortical layers. L6b was most strongly inhibited by PV and SST interneurons. This study shows that L6b integrates long-range intracortical information and is not part of the traditional thalamocortical loop.

View Publication Page
01/01/26 | LDDMEm: Large Deformation Diffeomorphic Metric Embedding
Fleishman GM, Fletcher PT
Medical Image Computing and Computer Assisted Intervention – MICCAI 2025. 2026-01-01:. doi: 10.1007/978-3-032-04947-6_31

We present a method, open-source software, and experiments which embed arbitrary deformation vector fields produced by any method (e.g., ANTs or VoxelMorph) in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework. This decouples formal diffeomorphic shape analysis from image registration, which has many practical benefits. Shape analysis can be added to study designs without modification to already chosen image registration methods and existing databases of deformation fields can be reanalyzed within the LDDMM framework without repeating image registrations. Pairwise time series studies can be extended to full time series regression with minimal added computing. The diffeomorphic rigor of image registration methods can be compared by embedding deformation fields and comparing projection distances. Finally, the added value of formal diffeomorphic shape analysis can be more fairly evaluated when it is derived from and compared to a baseline set of deformation fields. In brief, the method is a straightforward use of geodesic shooting in diffeomorphisms with a deformation field as the target, rather than an image. This is simpler than the image registration case which leads to a faster implementation that requires fewer user derived parameters.

 

View Publication Page
10/31/16 | Learning a metric for class-conditional KNN.
Im DJ, Taylor GW
International Joint Conference on Neural Networks, IJCNN 2016. 2016 Oct 31:. doi: 10.1109/IJCNN.2016.7727436

Naïve Bayes Nearest Neighbour (NBNN) is a simple and effective framework which addresses many of the pitfalls of K-Nearest Neighbour (KNN) classification. It has yielded competitive results on several computer vision benchmarks. Its central tenet is that during NN search, a query is not compared to every example in a database, ignoring class information. Instead, NN searches are performed within each class, generating a score per class. A key problem with NN techniques, including NBNN, is that they fail when the data representation does not capture perceptual (e.g. class-based) similarity. NBNN circumvents this by using independent engineered descriptors (e.g. SIFT). To extend its applicability outside of image-based domains, we propose to learn a metric which captures perceptual similarity. Similar to how Neighbourhood Components Analysis optimizes a differentiable form of KNN classification, we propose 'Class Conditional' metric learning (CCML), which optimizes a soft form of the NBNN selection rule. Typical metric learning algorithms learn either a global or local metric. However, our proposed method can be adjusted to a particular level of locality by tuning a single parameter. An empirical evaluation on classification and retrieval tasks demonstrates that our proposed method clearly outperforms existing learned distance metrics across a variety of image and non-image datasets.

View Publication Page
11/01/12 | Learning animal social behavior from trajectory features.
Eyjolfsdottir E, Burgos-Artizzu XP, Branson S, Branson K, Anderson D, Perona P
Workshop on Visual Observation and Analysis of Animal and Insect Behavior. 2012 Nov:
10/09/19 | Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity.
Coddington LT, Dudman JT
Neuron. 2019 Oct 09;104(1):63-77. doi: 10.1016/j.neuron.2019.08.036

Animals infer when and where a reward is available from experience with informative sensory stimuli and their own actions. In vertebrates, this is thought to depend upon the release of dopamine from midbrain dopaminergic neurons. Studies of the role of dopamine have focused almost exclusively on their encoding of informative sensory stimuli; however, many dopaminergic neurons are active just prior to movement initiation, even in the absence of sensory stimuli. How should current frameworks for understanding the role of dopamine incorporate these observations? To address this question, we review recent anatomical and functional evidence for action-related dopamine signaling. We conclude by proposing a framework in which dopaminergic neurons encode subjective signals of action initiation to solve an internal credit assignment problem.

View Publication Page
10/04/20 | Learning Guided Electron Microscopy with Active Acquisition
Mi L, Wang H, Meirovitch Y, Schalek R, Turaga SC, Lichtman JW, Samuel AD, Shavit N, Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racoceanu D, Joskowicz L
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. 10/2020:

Single-beam scanning electron microscopes (SEM) are widely used to acquire massive datasets for biomedical study, material analysis, and fabrication inspection. Datasets are typically acquired with uniform acquisition: applying the electron beam with the same power and duration to all image pixels, even if there is great variety in the pixels' importance for eventual use. Many SEMs are now able to move the beam to any pixel in the field of view without delay, enabling them, in principle, to invest their time budget more effectively with non-uniform imaging.

View Publication Page
09/14/22 | Learning of probabilistic punishment as a model of anxiety produces changes in action but not punisher encoding in the dmPFC and VTA.
Jacobs DS, Allen MC, Park J, Moghaddam B
eLife. 2022 Sep 14;11:. doi: 10.7554/eLife.78912

Previously, we developed a novel model for anxiety during motivated behavior by training rats to perform a task where actions executed to obtain a reward were probabilistically punished and observed that after learning, neuronal activity in the ventral tegmental area (VTA) and dorsomedial prefrontal cortex (dmPFC) represent the relationship between action and punishment risk (Park & Moghaddam, 2017). Here we used male and female rats to expand on the previous work by focusing on neural changes in the dmPFC and VTA that were associated with the learning of probabilistic punishment, and anxiolytic treatment with diazepam after learning. We find that adaptive neural responses of dmPFC and VTA during the learning of anxiogenic contingencies are independent from the punisher experience and occur primarily during the peri-action and reward period. Our results also identify peri-action ramping of VTA neural calcium activity, and VTA-dmPFC correlated activity, as potential markers for the anxiolytic properties of diazepam.

View Publication Page
02/12/25 | Learning produces an orthogonalized state machine in the hippocampus.
Sun W, Winnubst J, Natrajan M, Lai C, Kajikawa K, Michaelos M, Gattoni R, Stringer C, Flickinger D, Fitzgerald JE, Spruston N
Nature. 2025 February 12;640:. doi: 10.1038/s41586-024-08548-w

Cognitive maps confer animals with flexible intelligence by representing spatial, temporal and abstract relationships that can be used to shape thought, planning and behaviour. Cognitive maps have been observed in the hippocampus1, but their algorithmic form and learning mechanisms remain obscure. Here we used large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different linear tracks in virtual reality. Throughout learning, both animal behaviour and hippocampal neural activity progressed through multiple stages, gradually revealing improved task representation that mirrored improved behavioural efficiency. The learning process involved progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent structure of the task. This decorrelation process was driven by individual neurons acquiring task-state-specific responses (that is, 'state cells'). Although various standard artificial neural networks did not naturally capture these dynamics, the clone-structured causal graph, a hidden Markov model variant, uniquely reproduced both the final orthogonalized states and the learning trajectory seen in animals. The observed cellular and population dynamics constrain the mechanisms underlying cognitive map formation in the hippocampus, pointing to hidden state inference as a fundamental computational principle, with implications for both biological and artificial intelligence.

View Publication Page
11/01/16 | Learning recurrent representations for hierarchical behavior modeling.
Eyjolfsdottir E, Branson K, Yue Y, Perona P
arXiv. 2016 Nov 1;arXiv:1611.00094(arXiv:1611.00094):

We propose a framework for detecting action patterns from motion sequences and modeling the sensory-motor relationship of animals, using a generative recurrent neural network. The network has a discriminative part (classifying actions) and a generative part (predicting motion), whose recurrent cells are laterally connected, allowing higher levels of the network to represent high level phenomena. We test our framework on two types of data, fruit fly behavior and online handwriting. Our results show that 1) taking advantage of unlabeled sequences, by predicting future motion, significantly improves action detection performance when training labels are scarce, 2) the network learns to represent high level phenomena such as writer identity and fly gender, without supervision, and 3) simulated motion trajectories, generated by treating motion prediction as input to the network, look realistic and may be used to qualitatively evaluate whether the model has learnt generative control rules.

View Publication Page
03/10/25 | Learning reshapes the hippocampal representation hierarchy
Chiossi HS, Nardin M, Tkačik G, Csicsvari JL
Proc. Natl. Acad. Sci. U.S.A.. 2025 Mar 10:. doi: 10.1073/pnas.2417025122

Biological neural networks seem to efficiently select and represent task-relevant features of their inputs, an ability that is highly sought after also in artificial networks. A lot of work has gone into identifying such representations in both sensory and motor systems; however, less is understood about how representations form during complex learning conditions to support behavior, especially in higher associative brain areas. Our work shows that the hippocampus maintains a robust hierarchical representation of task variables and that this structure can support new learning through minimal changes to the neural representations.

bioRxiv Preprint: https://www.doi.org/10.1101/2024.08.21.608911

View Publication Page