Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2809 Janelia Publications

Showing 1591-1600 of 2809 results
02/28/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Kumar P, Lavis LD
Annual Review Neuroscience. 2022 Feb 28:. doi: 10.1146/annurev-neuro-110520-030031

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the , Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
07/08/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Kumar P, Lavis LD
Annual Review Neuroscience. 2022 Jul 08;45:131-150. doi: 10.1146/annurev-neuro-110520-030031

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems.

View Publication Page
05/08/18 | Membrane bending moduli of coexisting liquid phases containing transmembrane peptide.
Usery RD, Enoki TA, Wickramasinghe SP, Nguyen VP, Ackerman DG, Greathouse DV, Koeppe RE, Barrera FN, Feigenson GW
Biophys J. 2018 May 08;114(9):2152-2164. doi: 10.1016/j.bpj.2018.03.026

A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist.

View Publication Page
10/31/17 | Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers.
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM
BMC Biology. 2017 Oct 31;15(1):102. doi: 10.1186/s12915-017-0432-0

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.

View Publication Page
08/17/16 | Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy.
Aguet F, Upadhyayula S, Gaudin R, Chou Y, Cocucci E, He K, Chen B, Mosaliganti K, Pasham M, Skillern W, Legant WR, Liu T, Findlay G, Marino E, Danuser G, Megason S, Betzig E, Kirchhausen T
Molecular Biology of the Cell. 2016 Aug 17;27(22):3418-35. doi: 10.1091/mbc.E16-03-0164

Membrane remodeling is an essential part for transfer of components to and from the cell surface and membrane-bound organelles, and for changes in cell shape, particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging, mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and non-invasive illumination of the newly developed lattice light sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and showed that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and remained relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and in multicellular assemblies.

View Publication Page
07/01/20 | Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus.
Zhao X, Wang Y, Spruston N, Magee JC
Nature Neuroscience. 2020 Jul 1;23(7):881-91. doi: 10.1038/s41593-020-0646-2

As animals navigate, they must identify features within context. In the mammalian brain, the hippocampus has the ability to separately encode different environmental contexts, even when they share some prominent features. To do so, neurons respond to sensory features in a context-dependent manner; however, it is not known how this encoding emerges. To examine this, we performed electrical recordings in the hippocampus as mice navigated in two distinct virtual environments. In CA1, both synaptic input to single neurons and population activity strongly tracked visual cues in one environment, whereas responses were almost completely absent when the same cue was presented in a second environment. A very similar, highly context-dependent pattern of cue-driven spiking was also observed in CA3. These results indicate that CA1 inherits a complex spatial code from upstream regions, including CA3, that have already computed a context-dependent representation of environmental features.

View Publication Page
03/19/19 | Membrane-cytoskeletal crosstalk mediated by myosin-I regulates adhesion turnover during phagocytosis.
Barger SR, Reilly NS, Shutova MS, Li Q, Maiuri P, Heddleston JM, Mooseker MS, Flavell RA, Svitkina T, Oakes PW, Krendel M, Gauthier NC
Nature Communications. 2019 03 19;10(1):1249. doi: 10.1038/s41467-019-09104-1

Phagocytosis of invading pathogens or cellular debris requires a dramatic change in cell shape driven by actin polymerization. For antibody-covered targets, phagocytosis is thought to proceed through the sequential engagement of Fc-receptors on the phagocyte with antibodies on the target surface, leading to the extension and closure of the phagocytic cup around the target. We find that two actin-dependent molecular motors, class 1 myosins myosin 1e and myosin 1f, are specifically localized to Fc-receptor adhesions and required for efficient phagocytosis of antibody-opsonized targets. Using primary macrophages lacking both myosin 1e and myosin 1f, we find that without the actin-membrane linkage mediated by these myosins, the organization of individual adhesions is compromised, leading to excessive actin polymerization, slower adhesion turnover, and deficient phagocytic internalization. This work identifies a role for class 1 myosins in coordinated adhesion turnover during phagocytosis and supports a mechanism involving membrane-cytoskeletal crosstalk for phagocytic cup closure.

View Publication Page
Baker Lab
10/20/16 | Memory elicited by courtship conditioning requires mushroom body neuronal subsets similar to those utilized in appetitive memory.
Montague SA, Baker BS
PLoS One. 2016 Oct 20;11(10):e0164516. doi: 10.1371/journal.pone.0164516

An animal's ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.

View Publication Page
01/01/26 | Memory from variability: Heritable short-term cellular memory emerges from stochastic biochemical reaction networks
Aronson MS, Zhou BY, Fitzgerald JE, Sgro AE
bioRxiv. 2026 Jan 01:. doi: 10.64898/2025.12.31.694479

Cells exhibit a mysterious form of selective heritable short-term memory, influencing outcomes as diverse as cell fate decisions in embryos and environmental responses in cancer cells and bacteria. Here, we present a simple theoretical framework explaining how this selective memory can arise from the reactions regulating molecular levels in cells. Our key insight is that related cells retain more similar molecular concentrations relative to random cells when a greater variance of possible concentration states is created during a single cell generation than is created by cell division across a population. This persistence of molecular similarity down a lineage constitutes a form of heritable short-term memory. We identify the biochemical networks that produce, modify, and degrade molecules as an underexplored source of these additional molecular concentration states. Using experimentally informed simulations, we find that the strength and duration of molecular similarity down a lineage depend on tunable network properties, explaining why some cellular traits persist only briefly while others last generations. These contributions to molecular concentration variance from biochemical reaction networks act in concert with gene expression and other regulatory processes to shape the protein composition of cells. Our framework yields clear, testable predictions for determining how biochemical network architectures drive non-genetic cellular inheritance.

View Publication Page
06/07/17 | Memory retrieval from first principles.
Katkov M, Romani S, Tsodyks M
Neuron. 2017 Jun 07;94(5):1027-1032. doi: 10.1016/j.neuron.2017.03.048

The dilemma that neurotheorists face is that (1) detailed biophysical models that can be constrained by direct measurements, while being of great importance, offer no immediate insights into cognitive processes in the brain, and (2) high-level abstract cognitive models, on the other hand, while relevant for understanding behavior, are largely detached from neuronal processes and typically have many free, experimentally unconstrained parameters that have to be tuned to a particular data set and, hence, cannot be readily generalized to other experimental paradigms. In this contribution, we propose a set of "first principles" for neurally inspired cognitive modeling of memory retrieval that has no biologically unconstrained parameters and can be analyzed mathematically both at neuronal and cognitive levels. We apply this framework to the classical cognitive paradigm of free recall. We show that the resulting model accounts well for puzzling behavioral data on human participants and makes predictions that could potentially be tested with neurophysiological recording techniques.

View Publication Page