Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2777 Janelia Publications

Showing 1921-1930 of 2777 results
11/18/24 | Patch-walking: Coordinated multi-pipette patch clamp for efficiently finding synaptic connections
Mighten C. Yip , Mercedes M. Gonzalez , Colby F. Lewallen , Corey R. Landry , Ilya Kolb , Bo Yang , William M. Stoy , Ming-fai Fong , Matthew JM Rowan , Edward S. Boyden , Craig R. Forest
eLife. 2024 Nov 18;13:RP97399. doi: 10.7554/elife.97399

Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can 'walk' across the mouse brain slice, termed 'patch-walking.' We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e. 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding three connections. Patch-walking yields 80-92% more probed connections, for experiments with 10-100 cells than the traditional synaptic connection searching method.

View Publication Page
Magee Lab
04/16/09 | Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons.
Takahashi H, Magee JC
Neuron. 2009 Apr 16;62(1):102-11. doi: 10.1016/j.neuron.2009.03.007

Input comparison is thought to occur in many neuronal circuits, including the hippocampus, where functionally important interactions between the Schaffer collateral and perforant pathways have been hypothesized. We investigated this idea using multisite, whole-cell recordings and Ca2+ imaging and found that properly timed, repetitive stimulation of both pathways results in the generation of large plateau potentials in distal dendrites of CA1 pyramidal neurons. These dendritic plateau potentials produce widespread Ca2+ influx, large after-depolarizations, burst firing output, and long-term potentiation of perforant path synapses. Plateau duration is directly related to the strength and temporal overlap of pathway activation and involves back-propagating action potentials and both NMDA receptors and voltage-gated Ca2+ channels. Thus, the occurrence of highly correlated SC and PP input to CA1 is signaled by a dramatic change in output mode and an increase in input efficacy, all induced by a large plateau potential in the distal dendrites of CA1 pyramidal neurons.

View Publication Page
Zlatic Lab
04/19/17 | Pavlovian conditioning of larval Drosophila: an illustrated, multilingual, hands-on manual for odor-taste associative learning in maggots.
Michels B, Saumweber T, Biernacki R, Thur J, Glasgow RD, Schleyer M, Chen Y, Eschbach C, Stocker RF, Toshima N, Tanimura T, Louis M, Arias-Gil G, Marescotti M, Benfenati F, Gerber B
Frontiers in Behavioral Neuroscience. 2017 Apr 19;11:45. doi: 10.3389/fnbeh.2017.00045

Larval Drosophila offer a study case for behavioral neurogenetics that is simple enough to be experimentally tractable, yet complex enough to be worth the effort. We provide a detailed, hands-on manual for Pavlovian odor-reward learning in these animals. Given the versatility of Drosophila for genetic analyses, combined with the evolutionarily shared genetic heritage with humans, the paradigm has utility not only in behavioral neurogenetics and experimental psychology, but for translational biomedicine as well. Together with the upcoming total synaptic connectome of the Drosophila nervous system and the possibilities of single-cell-specific transgene expression, it offers enticing opportunities for research. Indeed, the paradigm has already been adopted by a number of labs and is robust enough to be used for teaching in classroom settings. This has given rise to a demand for a detailed, hands-on manual directed at newcomers and/or at laboratory novices, and this is what we here provide. The paradigm and the present manual have a unique set of features: • The paradigm is cheap, easy, and robust; • The manual is detailed enough for newcomers or laboratory novices; • It briefly covers the essential scientific context; • It includes sheets for scoring, data analysis, and display; • It is multilingual: in addition to an English version we provide German, French, Japanese, Spanish and Italian language versions as well. The present manual can thus foster science education at an earlier age and enable research by a broader community than has been the case to date.

View Publication Page
12/24/24 | Pearling Drives Mitochondrial DNA Nucleoid Distribution
Landoni JC, Lycas MD, Macuada J, Jaccard R, Obara CJ, Moore AS, Ben Nejma S, Hoffman D, Lippincott-Schwartz J, Marshall W, Sturm G, Manley S
bioRxiv. 12/2024:. doi: 10.1101/2024.12.21.629917

The regular distribution of mitochondrial DNA-containing nucleoids is essential for mitochondrial function and genome inheritance; however, the underlying mechanisms remain unknown. Our data reveal that mitochondria frequently undergo spontaneous and reversible pearling - a biophysical instability in which tubules undulate into regularly spaced beads. We discovered that pearling imposes a characteristic length scale, simultaneously mediating nucleoid disaggregation and establishing inter-nucleoid distancing with near-maximally achievable precision. Cristae invaginations play a dual role: lamellar cristae density determines pearling frequency and duration, and preserves the resulting nucleoid spacing after recovery. The distribution of mitochondrial genomes is thus fundamentally governed by the interplay between spontaneous pearling and cristae ultrastructure.

View Publication Page
08/06/25 | PEELing: an integrated and user-centric platform for cell-surface proteomics analysis
Xi Peng , Jody Clements , Zuzhi Jiang , Stephan Preibisch , Jiefu Li
Bioinformatics. 2025 Aug 6:. doi: 10.1093/bioinformatics/btaf439

Summary: Molecular compartmentalization is vital for cellular physiology. Spatially-resolved proteomics allows biologists to survey protein composition and dynamics with subcellular resolution. Here we present PEELing, an integrated package and user-friendly web service for analyzing spatially-resolved proteomics data. PEELing assesses data quality using curated or user-defined references, performs cutoff analysis to remove contaminants, connects to databases for functional annotation, and generates data visualizations-providing a streamlined and reproducible workflow to explore spatially-resolved proteomics data.

Availability and implementation: PEELing and its tutorial are publicly available at https://peeling.janelia.org/ (Zenodo DOI: 10.5281/zenodo.15692517). A Python package of PEELing is available at https://github.com/JaneliaSciComp/peeling/ (Zenodo DOI: 10.5281/zenodo.15692434).

Contact: Technical support for PEELing: [email protected].

bioRxiv Preprint: https://doi.org/10.1101/2023.04.21.537871

View Publication Page
10/12/11 | Perception of sniff phase in mouse olfaction.
Smear M, Shusterman R, O’Connor R, Bozza T, Rinberg D
Nature. 2011 Oct 12;14(7373):1039-44. doi: 10.1038/nature10521

Olfactory systems encode odours by which neurons respond and by when they respond. In mammals, every sniff evokes a precise, odour-specific sequence of activity across olfactory neurons. Likewise, in a variety of neural systems, ranging from sensory periphery to cognitive centres, neuronal activity is timed relative to sampling behaviour and/or internally generated oscillations. As in these neural systems, relative timing of activity may represent information in the olfactory system. However, there is no evidence that mammalian olfactory systems read such cues. To test whether mice perceive the timing of olfactory activation relative to the sniff cycle (’sniff phase’), we used optogenetics in gene-targeted mice to generate spatially constant, temporally controllable olfactory input. Here we show that mice can behaviourally report the sniff phase of optogenetically driven activation of olfactory sensory neurons. Furthermore, mice can discriminate between light-evoked inputs that are shifted in the sniff cycle by as little as 10 milliseconds, which is similar to the temporal precision of olfactory bulb odour responses. Electrophysiological recordings in the olfactory bulb of awake mice show that individual cells encode the timing of photoactivation in relation to the sniff in both the timing and the amplitude of their responses. Our work provides evidence that the mammalian olfactory system can read temporal patterns, and suggests that timing of activity relative to sampling behaviour is a potent cue that may enable accurate olfactory percepts to form quickly.

View Publication Page
05/24/22 | Perceptual decisions exhibit hallmarks of dynamic Bayesian inference
Julie A. Charlton , Wiktor F. Młynarski , Yoon H. Bai , Ann M. Hermundstad , Robbe L. T. Goris
bioRxiv. 2022 May 24:. doi: 10.1101/2022.05.23.493109

To interpret the sensory environment, the brain combines ambiguous sensory measurements with context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages the statistical structure of the task to maximize decision accuracy and show that its decisions are biased by task context. The magnitude of this decision bias is not a fixed property of the sensory measurement but depends on the observer's belief about the current context. The model therefore predicts that decision bias will grow with the reliability of the context cue, the stability of the environment, and with the number of trials since the last context switch. Analysis of human choice data validates all three predictions, providing evidence that the brain continuously updates probabilistic representations of the environment to best interpret an uncertain, ever-changing world.

View Publication Page
05/30/17 | Perceptually accurate display of two greyscale images as a single colour image.
Taylor AB, Ioannou MS, Watanabe T, Hahn K, Chew T
Journal of Microscopy. 2017 May 30:. doi: 10.1111/jmi.12588

Life scientists often desire to display the signal from two different molecular probes as a single colour image, so as to convey information about the probes' relative concentrations as well as their spatial corelationship. Traditionally, such colour images are created through a merge display, where each greyscale signal is assigned to different channels of an RGB colour image. However, human perception of colour and greyscale intensity is not equivalent. Thus, a merged image display conveys to the typical viewer only a subset of the absolute and relative intensity information present in and between two greyscale images. The Commission Internationale de l'Eclairage L*a*b* colour space (CIELAB) has been designed to specify colours according to the perceptually defined quantities of hue (perceived colour) and luminosity (perceived brightness). Here, we use the CIELAB colour space to encode two dimensions of information about two greyscale images within these two perceptual dimensions of a single colour image. We term our method a Perceptually Uniform Projection display and show using biological image examples how these displays convey more information about two greyscale signals than comparable RGB colour space-based techniques.

View Publication Page
11/20/25 | Pericyte and Endothelial Primary Cilia and Centrioles have Disparate Organization Across the Brain Microvasculature
Grubb S, Chanddha V, Lippincott-Schwartz J, Ott C, Mughal A
bioRxiv:. doi: 10.1101/2025.11.19.689283

The brain microvascular functions are strongly influenced by the local microenvironment and cellular organization. Intracellular organelles, including primary cilia and centrioles, play critical roles in sensing and transmitting environmental cues and maintaining vascular integrity. However, their distribution across the brain vasculature remains poorly understood. In this study, we utilized publicly available large-volume electron microscopy datasets encompassing the cerebral vasculature from pial arterioles through parenchymal capillaries to pial venules. We systematically analyzed the cellular organization and characterized the distribution of primary cilia and centrioles in the mouse and human brain microvasculature. We found primary cilia exclusively on human cortical endothelial cells (ECs), indicating inter-species differences between mouse and human. Primary cilia were frequently present on mural cells (MCs, smooth muscle cells or pericytes) surrounding venules and capillaries but rarely observed on arterioles in both mouse and human brains. These MC primary cilia exhibited heterogeneity in ciliogenesis, including cells with ciliary pockets, surface cilia, and a hybrid configuration we refer as a partial pocket. In the mouse brain, many MC primary cilia were closely ensheathed by astrocytic endfeet and occasionally extended between them to establish proximity to synapses, whereas all primary cilia in the human brain were confined within the basal lamina. Our analysis of cellular density revealed similar EC densities between arterioles and venules in mice, but not in human. EC centrioles were consistently positioned against the direction of blood flow relative to the nuclei, suggesting that they may serve as a structural marker for flow direction. Collectively, these findings provide a comprehensive characterization of primary cilia and centrioles, highlighting distinct interspecies differences between mouse and human brain microvasculature. The proximity to neural cells and gradient distribution of these subcellular structures suggest that they may act as antennae for sensing mechanical and chemical signals within the brain microvascular environment.

View Publication Page
12/18/24 | Periodic ER-plasma membrane junctions support long-range Ca signal integration in dendrites.
Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J
Cell. 2024 Dec 18:. doi: 10.1016/j.cell.2024.11.029

Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca modulatory machinery, facilitating signal transmission and ryanodine-receptor-dependent Ca release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.

View Publication Page