Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2689 Janelia Publications

Showing 2141-2150 of 2689 results
02/19/18 | Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites.
Bloss EB, Cembrowski MS, Karsh B, Colonell J, Fetter RD, Spruston N
Nature Neuroscience. 2018 Mar;21(3):353-63. doi: 10.1038/s41593-018-0084-6

CA1 pyramidal neurons are a major output of the hippocampus and encode features of experience that constitute episodic memories. Feature-selective firing of these neurons results from the dendritic integration of inputs from multiple brain regions. While it is known that synchronous activation of spatially clustered inputs can contribute to firing through the generation of dendritic spikes, there is no established mechanism for spatiotemporal synaptic clustering. Here we show that single presynaptic axons form multiple, spatially clustered inputs onto the distal, but not proximal, dendrites of CA1 pyramidal neurons. These compound connections exhibit ultrastructural features indicative of strong synapses and occur much more commonly in entorhinal than in thalamic afferents. Computational simulations revealed that compound connections depolarize dendrites in a biophysically efficient manner, owing to their inherent spatiotemporal clustering. Our results suggest that distinct afferent projections use different connectivity motifs that differentially contribute to dendritic integration.

View Publication Page
05/10/18 | Single molecule fate of HIV-1 envelope reveals late-stage viral lattice incorporation.
Buttler CA, Pezeshkian N, Fernandez MV, Aaron J, Norman S, Freed EO, Van Engelenburg SB
Nature Communications. 2018 May 10;9(1):1861. doi: 10.1038/s41467-018-04220-w

Human immunodeficiency virus type 1 (HIV-1) assembly occurs on the inner leaflet of the host cell plasma membrane, incorporating the essential viral envelope glycoprotein (Env) within a budding lattice of HIV-1 Gag structural proteins. The mechanism by which Env incorporates into viral particles remains poorly understood. To determine the mechanism of recruitment of Env to assembly sites, we interrogate the subviral angular distribution of Env on cell-associated virus using multicolor, three-dimensional (3D) superresolution microscopy. We demonstrate that, in a manner dependent on cell type and on the long cytoplasmic tail of Env, the distribution of Env is biased toward the necks of cell-associated particles. We postulate that this neck-biased distribution is regulated by vesicular retention and steric complementarity of Env during independent Gag lattice formation.

View Publication Page
05/11/22 | Single molecule microscopy to profile the effect of zinc status of transcription factor dynamics
Leah J. Damon , Jesse Aaron , Amy E. Palmer
bioRxiv. 2022 May 11:. doi: 10.1101/2022.05.10.491421

Transcription factors (TFs) are DNA binding proteins that control the expression of genes. The regulation of transcription is a complex process that involves binding of TFs to specific sequences, recruitment of cofactors and chromatin remodelers, assembly of the pre-initiation complex and ultimately the recruitment of RNA polymerase II. Increasing evidence suggests that TFs are highly dynamic and interact only transiently with DNA. Single molecule microscopy techniques are powerful approaches for visualizing and tracking individual TF molecules as they diffuse in the nucleus and interact with DNA. In this work, we employ multifocus microscopy and highly inclined and laminated optical sheet microscopy to track TF dynamics in response to perturbations in labile zinc inside cells. We sought to define whether zinc-dependent TFs sense changes in the labile zinc pool by determining whether their dynamics and DNA binding can be modulated by zinc. While it is widely appreciated that TFs need zinc to bind DNA, whether zinc occupancy and hence TF function are sensitive to changes in cellular zinc remain open questions. We utilized fluorescently tagged versions of the glucocorticoid receptor (GR), with two C4 zinc finger domains, and CCCTC-binding factor (CTCF), with eleven C2H2 zinc finger domains. We found that the biophysical dynamics of both TFs are susceptible to changes in zinc, but in subtly different ways. These results indicate that at least some transcription factors are sensitive to zinc dynamics, revealing a potential new layer of transcriptional regulation.

View Publication Page
10/22/22 | Single molecule microscopy to profile the effect of zinc status on transcription factor dynamics.
Damon LJ, Aaron J, Palmer AE
Scientific Reports. 2022 Oct 22;12(1):17789. doi: 10.1038/s41598-022-22634-x

The regulation of transcription is a complex process that involves binding of transcription factors (TFs) to specific sequences, recruitment of cofactors and chromatin remodelers, assembly of the pre-initiation complex and recruitment of RNA polymerase II. Increasing evidence suggests that TFs are highly dynamic and interact only transiently with DNA. Single molecule microscopy techniques are powerful approaches for tracking individual TF molecules as they diffuse in the nucleus and interact with DNA. Here we employ multifocus microscopy and highly inclined laminated optical sheet microscopy to track TF dynamics in response to perturbations in labile zinc inside cells. We sought to define whether zinc-dependent TFs sense changes in the labile zinc pool by determining whether their dynamics and DNA binding can be modulated by zinc. We used fluorescently tagged versions of the glucocorticoid receptor (GR), with two C4 zinc finger domains, and CCCTC-binding factor (CTCF), with eleven C2H2 zinc finger domains. We found that GR was largely insensitive to perturbations of zinc, whereas CTCF was significantly affected by zinc depletion and its dwell time was affected by zinc elevation. These results indicate that at least some transcription factors are sensitive to zinc dynamics, revealing a potential new layer of transcriptional regulation.

View Publication Page
06/18/15 | Single molecules, cells, and super-resolution optics (Nobel Lecture).
Betzig E
Angewandte Chemie (International Edition in English). 2015 Jun 18:. doi: 10.1002/anie.201501003

The resolution of a microscope is determined by the diffraction limit in classical microscopy, whereby objects that are separated by half a wavelength can no longer be visually separated. To go below the diffraction limit required several tricks and discoveries. In his Nobel Lecture, E. Betzig describes the developments that have led to modern super high-resolution microscopy.

View Publication Page
02/28/16 | Single neuron morphology in vivo with confined primed conversion.
Mohr MA, Pantazis P
Methods in Cell Biology. 2016;133:125-38. doi: 10.1016/bs.mcb.2015.12.005

Unraveling the structural organization of neurons can provide fundamental insights into brain function. However, visualizing neurite morphology in vivo remains difficult due to the high density and complexity of neural packing in the nervous system. Detailed analysis of neural morphology requires distinction of closely neighboring, highly intricate cellular structures such as neurites with high contrast. Green-to-red photoconvertible fluorescent proteins have become powerful tools to optically highlight molecular and cellular structures for developmental and cell biological studies. Yet, selective labeling of single cells of interest in vivo has been precluded due to inefficient photoconversion when using high intensity, pulsed, near-infrared laser sources that are commonly applied for achieving axially confined two-photon (2P) fluorescence excitation. Here we describe a novel optical mechanism, "confined primed conversion," which employs continuous dual-wave illumination to achieve confined green-to-red photoconversion of single cells in live zebrafish embryos. Confined primed conversion exhibits wide applicability and this chapter specifically elaborates on employing this imaging modality to analyze neural morphology of optically targeted single neurons in the developing zebrafish brain.

View Publication Page
01/01/16 | Single-cell coding of sensory, spatial and numerical magnitudes in primate prefrontal, premotor and cingulate motor cortices.
Eiselt A, Nieder A
Experimental Brain Research. 2016 Jan;234(1):241-54. doi: 10.1007/s00221-015-4449-8

The representation of magnitude information enables humans and animal species alike to successfully interact with the external environment. However, how various types of magnitudes are processed by single neurons to guide goal-directed behavior remains elusive. Here, we recorded single-cell activity from the dorsolateral prefrontal (PFC), dorsal premotor (PMd) and cingulate motor (CMA) cortices in monkeys discriminating discrete numerical (numerosity), continuous spatial (line length) and basic sensory (spatial frequency) stimuli. We found that almost exclusively PFC neurons represented the different magnitude types during sample presentation and working memory periods. The frequency of magnitude-selective cells in PMd and CMA did not exceed chance level. The proportion of PFC neurons selectively tuned to each of the three magnitude types were comparable. Magnitude coding was mainly dissociated at the single-neuron level, with individual neurons representing only one of the three tested magnitude types. Neuronal magnitude discriminability, coding strength and temporal evolution were comparable between magnitude types encoded by PFC neuron populations. Our data highlight the importance of PFC neurons in representing various magnitude categories. Such magnitude representations are based on largely distributed coding by single neurons that are anatomically intermingled within the same cortical area.

View Publication Page
07/01/21 | Single-cell imaging of genome organization and dynamics.
Xie L, Liu Z
Molecular Systems Biology. 2021 Jul 01;17(7):e9653. doi: 10.15252/msb.20209653

Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.

View Publication Page
Looger LabDruckmann LabKeller Lab
09/23/19 | Single-cell reconstruction of emerging population activity in an entire developing circuit.
Wan Y, Wei Z, Looger LL, Koyama M, Druckmann S, Keller PJ
Cell. 2019 Sep 23;179(2):. doi: 10.1016/j.cell.2019.08.039

Animal survival requires a functioning nervous system to develop during embryogenesis. Newborn neurons must assemble into circuits producing activity patterns capable of instructing behaviors. Elucidating how this process is coordinated requires new methods that follow maturation and activity of all cells across a developing circuit. We present an imaging method for comprehensively tracking neuron lineages, movements, molecular identities, and activity in the entire developing zebrafish spinal cord, from neurogenesis until the emergence of patterned activity instructing the earliest spontaneous motor behavior. We found that motoneurons are active first and form local patterned ensembles with neighboring neurons. These ensembles merge, synchronize globally after reaching a threshold size, and finally recruit commissural interneurons to orchestrate the left-right alternating patterns important for locomotion in vertebrates. Individual neurons undergo functional maturation stereotypically based on their birth time and anatomical origin. Our study provides a general strategy for reconstructing how functioning circuits emerge during embryogenesis.

View Publication Page
05/06/25 | Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster
Erica Ehrhardt , Samuel C Whitehead , Shigehiro Namiki , Ryo Minegishi , Igor Siwanowicz , Kai Feng , Hideo Otsuna , FlyLight Project Team , Geoffrey W Meissner , David Stern , Jim Truman , David Shepherd , Michael H. Dickinson , Kei Ito , Barry J Dickson , Itai Cohen , Gwyneth M Card , Wyatt Korff
eLife. 2025 May 06:. doi: 10.7554/eLife.106548.1

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.

View Publication Page