Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2689 Janelia Publications

Showing 2221-2230 of 2689 results
03/13/17 | Stochastic protein labeling enables long-term single molecule observation in vivo.
Liu H, Dong P, Ioannou MS, Li L, Shea J, Pasolli HA, Grimm JB, Rivlin PK, Lavis LD, Koyama M, Liu Z
bioRxiv. 2017 Mar 13:. doi: 10.1101/116186

Our ability to unambiguously image and track individual molecules in live cells is limited by packing of multiple copies of labeled molecules within the resolution limit. Here we devise a universal genetic strategy to precisely control protein copy number in a cell. This system has a dynamic titration range of more than 10,000 fold, enabling sparse labeling of proteins expressed at widely different levels. Combined with fluorescence signal amplification tags, this system extends the duration of automated single-molecule tracking by 2 orders of magnitude. We demonstrate long-term imaging of synaptic vesicle dynamics in cultured neurons as well as in live zebrafish. We found that axon initial segment utilizes a waterfall mechanism gating synaptic vesicle transport polarity by promoting anterograde transport processivity. Long-time observation also reveals that transcription factor Sox2 samples clustered binding sites in spatially-restricted sub-nuclear regions, suggesting that topological structures in the nucleus shape local gene activities by a sequestering mechanism. This strategy thus greatly expands the spatiotemporal length scales of live-cell single-molecule measurements for a quantitative understanding of complex control of molecular dynamics in vivo.

View Publication Page
01/01/09 | Stochastic resonance-enhanced laser-based particle detector.
Dutta A, Werner C
Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society.. 2009;2009:785-7. doi: 10.1109/IEMBS.2009.5332748

This paper presents a Laser-based particle detector whose response was enhanced by modulating the Laser diode with a white-noise generator. A Laser sheet was generated to cast a shadow of the object on a 200 dots per inch, 512 x 1 pixels linear sensor array. The Laser diode was modulated with a white-noise generator to achieve stochastic resonance. The white-noise generator essentially amplified the wide-bandwidth (several hundred MHz) noise produced by a reverse-biased zener diode operating in junction-breakdown mode. The gain in the amplifier in the white-noise generator was set such that the Receiver Operating Characteristics plot provided the best discriminability. A monofiber 40 AWG (approximately 80 microm) wire was detected with approximately 88% True Positive rate and approximately 19% False Positive rate in presence of white-noise modulation and with approximately 71% True Positive rate and approximately 15% False Positive rate in absence of white-noise modulation.

View Publication Page
01/15/08 | Straightening caenorhabditis elegans images.
Peng H, Long F, Liu X, Kim SK, Myers EW
Bioinformatics. 2008 Jan 15;24:234-42. doi: 10.1093/bioinformatics/btm569

MOTIVATION: Caenorhabditis elegans, a roundworm found in soil, is a widely studied model organism with about 1000 cells in the adult. Producing high-resolution fluorescence images of C.elegans to reveal biological insights is becoming routine, motivating the development of advanced computational tools for analyzing the resulting image stacks. For example, worm bodies usually curve significantly in images. Thus one must ’straighten’ the worms if they are to be compared under a canonical coordinate system. RESULTS: We develop a worm straightening algorithm (WSA) that restacks cutting planes orthogonal to a ’backbone’ that models the anterior-posterior axis of the worm. We formulate the backbone as a parametric cubic spline defined by a series of control points. We develop two methods for automatically determining the locations of the control points. Our experimental methods show that our approaches effectively straighten both 2D and 3D worm images.

View Publication Page
04/12/07 | Straightening worm images.
Peng H, Long F, Myers EW
2007 4TH IEEE International Symposium on Biomedical Imagin : Macro to Nano, VOLS 1-3. 2007 Apr 12-15:292-5. doi: 10.1109/ISBI.2007.356846

C. elegans, a roundworm in soil is widely used in studying animal development and aging, cell differentiation, etc. Recentlv, high-resolution fluorescence images of C. elegans have become available, introducing several new image analysis applications. One problem is that worm bodies usually curve greatly in images, thus it is highly desired to straighten worms so that they can be compared easily under the same canonical coordinate system. We develop a worm straightening algorithm (WSA) using a cutting-plane restacking method, which aggregates the linear rotation transforms of a continuous sequence of cutting lines/planes orthogonal to the "backbone" of a worm to best approximate the nonlinearly bended worm body. We formulate the backbone as a parametric form of cubic spline of a series of control points. We develop two minimum-spanning-tree based methods to automatically determine the locations of control points. Our experimental methods show that our approach can effectively straighten both 2D and 3D worm images.

View Publication Page
Darshan Lab
09/17/18 | Strength of correlations in strongly recurrent neuronal networks.
Darshan R, van Vreeswijk C, Hansel D
Physical Review X. 2018 Sep 17:031072. doi: 10.1103/PhysRevX.8.031072

Spatiotemporal correlations in brain activity are functionally important and have been implicated in perception, learning and plasticity, exploratory behavior, and various aspects of cognition. Neurons in the cerebral cortex are strongly interacting. Their activity is temporally irregular and can exhibit substantial correlations. However, how the collective dynamics of highly recurrent and strongly interacting neurons can evolve into a state in which the activity of individual cells is highly irregular yet macroscopically correlated is an open question. Here, we develop a general theory that relates the strength of pairwise correlations to the anatomical features of networks of strongly coupled neurons. To this end, we investigate networks of binary units. When interactions are strong, the activity is irregular in a large region of parameter space. We find that despite the strong interactions, the correlations are generally very weak. Nevertheless, we identify architectural features, which if present, give rise to strong correlations without destroying the irregularity of the activity. For networks with such features, we determine how correlations scale with the network size and the number of connections. Our work shows the mechanism by which strong correlations can be consistent with highly irregular activity, two hallmarks of neuronal dynamics in the central nervous system.

View Publication Page
Gonen Lab
01/18/19 | Structural basis for substrate binding and specificity of a sodium-alanine symporter AgcS.
Ma J, Lei H, Reyes FE, Sanchez-Martinez S, Sarhan MF, Hattne J, Gonen T
Proceedings of the National Academy of Sciences of the United States of America. 2019 Jan 18;116(6):2086-90. doi: 10.1073/pnas.1806206116

The amino acid, polyamine, and organocation (APC) superfamily is the second largest superfamily of membrane proteins forming secondary transporters that move a range of organic molecules across the cell membrane. Each transporter in the APC superfamily is specific for a unique subset of substrates, even if they possess a similar structural fold. The mechanism of substrate selectivity remains, by and large, elusive. Here, we report two crystal structures of an APC member from , the alanine or glycine:cation symporter (AgcS), with l- or d-alanine bound. Structural analysis combined with site-directed mutagenesis and functional studies inform on substrate binding, specificity, and modulation of the AgcS family and reveal key structural features that allow this transporter to accommodate glycine and alanine while excluding all other amino acids. Mutation of key residues in the substrate binding site expand the selectivity to include valine and leucine. These studies provide initial insights into substrate selectivity in AgcS symporters.

View Publication Page
11/01/15 | Structural basis for the antipolymer activity of Hb ζ22βsζ2βs2 trapped in a tense conformation.
Safo MK, Ko T, Schreiter ER, Russell JE
Journal of Molecular Structure. 2015 Nov;1099:99-107. doi: 10.1016/j.molstruc.2015.06.047

The phenotypical severity of sickle cell disease (SCD) can be mitigated by modifying mutant hemoglobin S (Hb S, Hb α2β2s) to contain embryonic ζ globin in place of adult α-globin subunits (Hb ζ2β2s). Crystallographical analyses of liganded Hb ζζ2β2s, though, demonstrate a tense (T-state) quaternary structure that paradoxically predicts its participation in--rather than its exclusion from--pathological deoxyHb S polymers. We resolved this structure-function conundrum by examining the effects of α → ζ exchange on the characteristics of specific amino acids that mediate sickle polymer assembly. Superposition analyses of the βs subunits of T-state deoxyHb α2β2s and T-state CO-liganded Hb ζ2β2s reveal significant displacements of both mutant βsVal6 and conserved β-chain contact residues, predicting weakening of corresponding polymer-stabilizing interactions. Similar comparisons of the α- and ζ-globin subunits implicate four amino acids that are either repositioned or undergo non-conservative substitution, abrogating critical polymer contacts. CO-Hb ζ2βs2 additionally exhibits a unique trimer-of-heterotetramers crystal packing that is sustained by novel intermolecular interactions involving the pathological βsVal6, contrasting sharply with the classical double-stranded packing of deoxyHb S. Finally, the unusually large buried solvent-accessible surface area for CO-Hb ζ2β2s suggests that it does not co-assemble with deoxyHb S in vivo  . In sum, the antipolymer activities of Hb ζ2β2s appear to arise from both repositioning and replacement of specific α- and βs-chain residues, favoring an alternate T-state solution structure that is excluded from pathological deoxyHb S polymers. These data account for the antipolymer activity of Hb ζ2β2s, and recommend the utility of SCD therapeutics that capitalize on α-globin exchange strategies.

View Publication Page
01/01/14 | Structural basis for the prion-like MAVS filaments in antiviral innate immunity.
Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang Q
eLife. 2014 Jan 1;3:e01489. doi: 10.7554/eLife.01489

Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI: http://dx.doi.org/10.7554/eLife.01489.001.

View Publication Page
11/17/17 | Structural basis of bacterial transcription activation.
Liu B, Hong C, Huang RK, Yu Z, Steitz TA
Science (New York, N.Y.). 2017 Nov 17;358(6365):947-951. doi: 10.1126/science.aao1923

In bacteria, the activation of gene transcription at many promoters is simple and only involves a single activator. The cyclic adenosine 3',5'-monophosphate receptor protein (CAP), a classic activator, is able to activate transcription independently through two different mechanisms. Understanding the class I mechanism requires an intact transcription activation complex (TAC) structure at a high resolution. Here we report a high-resolution cryo-electron microscopy structure of an intact Escherichia coli class I TAC containing a CAP dimer, a σ(70)-RNA polymerase (RNAP) holoenzyme, a complete class I CAP-dependent promoter DNA, and a de novo synthesized RNA oligonucleotide. The structure shows how CAP wraps the upstream DNA and how the interactions recruit RNAP. Our study provides a structural basis for understanding how activators activate transcription through the class I recruitment mechanism.

View Publication Page
09/19/22 | Structural Diversity within the Endoplasmic Reticulum-From the Microscale to the Nanoscale.
Obara CJ, Moore AS, Lippincott-Schwartz J
Cold Spring Harbor Perspectives in Biology. 2022 Sep 19:. doi: 10.1101/cshperspect.a041259

The endoplasmic reticulum (ER) is a continuous, highly dynamic membrane compartment that is crucial for numerous basic cellular functions. The ER stretches from the nuclear envelope to the outer periphery of all living eukaryotic cells. This ubiquitous organelle shows remarkable structural complexity, adopting a range of shapes, curvatures, and length scales. Canonically, the ER is thought to be composed of two simple membrane elements: sheets and tubules. However, recent advances in superresolution light microscopy and three-dimensional electron microscopy have revealed an astounding diversity of nanoscale ER structures, greatly expanding our view of ER organization. In this review, we describe these diverse ER structures, focusing on what is known of their regulation and associated functions in mammalian cells.

View Publication Page