Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2529 Janelia Publications

Showing 2281-2290 of 2529 results
Svoboda Lab
04/17/13 | The mechanical variables underlying object localization along the axis of the whisker.
Pammer L, O’Connor DH, Hires SA, Clack NG, Huber D, Myers EW, Svoboda K
The Journal of Neuroscience. 2013 Apr 17;33(16):6726-41. doi: 10.1523/JNEUROSCI.4316-12.2013

Rodents move their whiskers to locate objects in space. Here we used psychophysical methods to show that head-fixed mice can localize objects along the axis of a single whisker, the radial dimension, with one-millimeter precision. High-speed videography allowed us to estimate the forces and bending moments at the base of the whisker, which underlie radial distance measurement. Mice judged radial object location based on multiple touches. Both the number of touches (1-17) and the forces exerted by the pole on the whisker (up to 573 μN; typical peak amplitude, 100 μN) varied greatly across trials. We manipulated the bending moment and lateral force pressing the whisker against the sides of the follicle and the axial force pushing the whisker into the follicle by varying the compliance of the object during behavior. The behavioral responses suggest that mice use multiple variables (bending moment, axial force, lateral force) to extract radial object localization. Characterization of whisker mechanics revealed that whisker bending stiffness decreases gradually with distance from the face over five orders of magnitude. As a result, the relative amplitudes of different stress variables change dramatically with radial object distance. Our data suggest that mice use distance-dependent whisker mechanics to estimate radial object location using an algorithm that does not rely on precise control of whisking, is robust to variability in whisker forces, and is independent of object compliance and object movement. More generally, our data imply that mice can measure the amplitudes of forces in the sensory follicles for tactile sensation.

View Publication Page
Rubin LabSvoboda Lab
09/17/20 | The mind of a mouse.
Abbott LF, Bock DD, Callaway EM, Denk W, Dulac C, Fairhall AL, Fiete I, Harris KM, Helmstaedter M, Jain V, Kasthuri N, LeCun Y, Lichtman JW, Littlewood PB, Luo L, Maunsell JH, Reid RC, Rosen BR, Rubin GM, Sejnowski TJ, Seung HS, Svoboda K, Tank DW, Tsao D, Van Essen DC
Cell. 2020 Sep 17;182(6):1372-1376. doi: 10.1016/j.cell.2020.08.010

Large scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying brain function are ripe for analysis. We discuss benefits of mapping a mouse brain at the level of synapses.

View Publication Page
Riddiford Lab
04/01/09 | The molecular mechanisms of cuticular melanization: the ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta.
Hiruma K, Riddiford LM
Insect Biochemistry and Molecular Biology. 2009 Apr;39(4):245-53. doi: 10.1016/j.ibmb.2009.01.008

Many insect developmental color changes are known to be regulated by both ecdysone and juvenile hormone. Yet the molecular mechanisms underlying this regulation have not been well understood. This review highlights the hormonal mechanisms involved in the regulation of two key enzymes [dopa decarboxylase (DDC) and phenoloxidase] necessary for insect cuticular melanization, and the molecular action of 20-hydroxyecdysone on various transcription factors leading to DDC expression at the end of a larval molt in Manduca sexta. In addition, the ecdysone cascade found in M. sexta is compared with that of other organisms.

View Publication Page
10/06/20 | The mTORC1/S6K/PDCD4/eIF4A axis determines outcome of mitotic arrest.
Moustafa-Kamal M, Kucharski TJ, El-Assaad W, Abbas YM, Gandin V, Nagar B, Pelletier J, Topisirovic I, Teodoro JG
Cell Reports. 2020 Oct 06;33(1):108230. doi: 10.1016/j.celrep.2020.108230

mTOR is a serine/threonine kinase and a master regulator of cell growth and proliferation. Raptor, a scaffolding protein that recruits substrates to mTOR complex 1 (mTORC1), is known to be phosphorylated during mitosis, but the significance of this phosphorylation remains largely unknown. Here we show that raptor expression and mTORC1 activity are dramatically reduced in cells arrested in mitosis. Expression of a non-phosphorylatable raptor mutant reactivates mTORC1 and significantly reduces cytotoxicity of the mitotic poison Taxol. This effect is mediated via degradation of PDCD4, a tumor suppressor protein that inhibits eIF4A activity and is negatively regulated by the mTORC1/S6K pathway. Moreover, pharmacological inhibition of eIF4A is able to enhance the effects of Taxol and restore sensitivity in Taxol-resistant cancer cells. These findings indicate that the mTORC1/S6K/PDCD4/eIF4A axis has a pivotal role in the death versus slippage decision during mitotic arrest and may be exploited clinically to treat tumors resistant to anti-mitotic agents.

View Publication Page
12/16/16 | The multilayer connectome of Caenorhabditis elegans.
Bentley B, Branicky R, Barnes CL, Chew YL, Yemini E, Bullmore ET, Vértes PE, Schafer WR
PLoS Computational Biology. 2016 Dec 16;12(12):e1005283. doi: 10.1371/journal.pcbi.1005283

Connectomics has focused primarily on the mapping of synaptic links in the brain; yet it is well established that extrasynaptic volume transmission, especially via monoamines and neuropeptides, is also critical to brain function and occurs primarily outside the synaptic connectome. We have mapped the putative monoamine connections, as well as a subset of neuropeptide connections, in C. elegans based on new and published gene expression data. The monoamine and neuropeptide networks exhibit distinct topological properties, with the monoamine network displaying a highly disassortative star-like structure with a rich-club of interconnected broadcasting hubs, and the neuropeptide network showing a more recurrent, highly clustered topology. Despite the low degree of overlap between the extrasynaptic (or wireless) and synaptic (or wired) connectomes, we find highly significant multilink motifs of interaction, pinpointing locations in the network where aminergic and neuropeptide signalling modulate synaptic activity. Thus, the C. elegans connectome can be mapped as a multiplex network with synaptic, gap junction, and neuromodulator layers representing alternative modes of interaction between neurons. This provides a new topological plan for understanding how aminergic and peptidergic modulation of behaviour is achieved by specific motifs and loci of integration between hard-wired synaptic or junctional circuits and extrasynaptic signals wirelessly broadcast from a small number of modulatory neurons.

View Publication Page
12/14/16 | The nanoscale spatial organization of B cell receptors on IgM- and IgG-expressing human B cells.
Lee J, Sengupta P, Brzostowski J, Lippincott-Schwartz J, Pierce SK
Molecular Biology of the Cell. 2016 Dec 14;28(4):511-23. doi: 10.1091/mbc.E16-06-0452

B cell activation is initiated by the binding of antigen to the B cell receptor (BCR). Here we used dSTORM super resolution imaging to characterize the nanoscale spatial organization of IgM and IgG BCRs on the surfaces of resting and antigen-activated human peripheral blood B cells. We provide insights into both the fundamental process of antigen-driven BCR clustering as well as differences in the spatial organization of IgM and IgG BCRs that may contribute to the characteristic differences in the responses of naïve and memory B cells to antigen. We provide evidence that although both IgM and IgG BCRs reside in highly heterogeneous protein islands that vary in both size and number of BCR single molecule localizations, both resting and activated B cells intrinsically maintain a high frequency of single isolated BCR localizations, which likely represent BCR monomers. IgG BCRs are more clustered than IgM BCRs on resting cells and form larger protein islands following antigen activation. Small dense BCR clusters likely formed via protein-protein interactions are present on the surface of resting cells and antigen activation induces these to come together to form less dense, larger islands, a process likely governed, at least in part, by protein-lipid interactions.

View Publication Page
09/01/23 | The Neural Basis of Drosophila Courtship Song
Joshua L. Lillvis , Kaiyu Wang , Hiroshi M. Shiozaki , Min Xu , David L. Stern , Barry J. Dickson
bioRxiv. 2023 Sep 01:. doi: 10.1101/2023.08.30.555537

Animal sounds are produced by patterned vibrations of specific organs, but the neural circuits that drive these vibrations are not well defined in any animal. Here we provide a functional and synaptic map of most of the neurons in the Drosophila male ventral nerve cord (the analog of the vertebrate spinal cord) that drive complex, patterned song during courtship. Male Drosophila vibrate their wings toward females during courtship to produce two distinct song modes – pulse and sine song – with characteristic features that signal species identity and male quality. We identified song-producing neural circuits by optogenetically activating and inhibiting identified cell types in the ventral nerve cord (VNC) and by tracing their patterns of synaptic connectivity in the male VNC connectome. The core song circuit consists of at least eight cell types organized into overlapping circuits, where all neurons are required for pulse song and a subset are required for sine song. The pulse and sine circuits each include a feed-forward pathway from brain descending neurons to wing motor neurons, with extensive reciprocal and feed-back connections. We also identify specific neurons that shape the individual features of each song mode. These results reveal commonalities amongst diverse animals in the neural mechanisms that generate diverse motor patterns from a single set of muscles.

View Publication Page
Zuker LabMouseLight
01/15/15 | The neural representation of taste quality at the periphery.
Barretto RP, Gillis-Smith S, Chandrashekar J, Yarmolinsky DA, Schnitzer MJ, Ryba NJ, Zuker CS
Nature. 2015 Jan 15;517(7534):373-6. doi: 10.1038/nature13873

The mammalian taste system is responsible for sensing and responding to the five basic taste qualities: sweet, sour, bitter, salty and umami. Previously, we showed that each taste is detected by dedicated taste receptor cells (TRCs) on the tongue and palate epithelium. To understand how TRCs transmit information to higher neural centres, we examined the tuning properties of large ensembles of neurons in the first neural station of the gustatory system. Here, we generated and characterized a collection of transgenic mice expressing a genetically encoded calcium indicator in central and peripheral neurons, and used a gradient refractive index microendoscope combined with high-resolution two-photon microscopy to image taste responses from ganglion neurons buried deep at the base of the brain. Our results reveal fine selectivity in the taste preference of ganglion neurons; demonstrate a strong match between TRCs in the tongue and the principal neural afferents relaying taste information to the brain; and expose the highly specific transfer of taste information between taste cells and the central nervous system.

View Publication Page
10/14/20 | The neuroanatomical ultrastructure and function of a biological ring attractor.
Turner-Evans DB, Jensen KT, Ali S, Paterson T, Sheridan A, Ray RP, Wolff T, Lauritzen JS, Rubin GM, Bock DD, Jayaraman V
Neuron. 2020 Oct 14;108(1):145-63. doi: 10.1016/j.neuron.2020.08.006

Neural representations of head direction (HD) have been discovered in many species. Theoretical work has proposed that the dynamics associated with these representations are generated, maintained, and updated by recurrent network structures called ring attractors. We evaluated this theorized structure-function relationship by performing electron-microscopy-based circuit reconstruction and RNA profiling of identified cell types in the HD system of Drosophila melanogaster. We identified motifs that have been hypothesized to maintain the HD representation in darkness, update it when the animal turns, and tether it to visual cues. Functional studies provided support for the proposed roles of individual excitatory or inhibitory circuit elements in shaping activity. We also discovered recurrent connections between neuronal arbors with mixed pre- and postsynaptic specializations. Our results confirm that the Drosophila HD network contains the core components of a ring attractor while also revealing unpredicted structural features that might enhance the network's computational power.

View Publication Page
Svoboda Lab
10/04/22 | The Neurodata Without Borders ecosystem for neurophysiological data science.
Rubel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, Baker P, Soltesz I, Ng L, Svoboda K, Frank L, Bouchard KE
eLife. 2022 Oct 04;11:. doi: 10.7554/eLife.78362

The neurophysiology of cells and tissues are monitored electrophysiologically and optically in diverse experiments and species, ranging from flies to humans. Understanding the brain requires integration of data across this diversity, and thus these data must be findable, accessible, interoperable, and reusable (FAIR). This requires a standard language for data and metadata that can coevolve with neuroscience. We describe design and implementation principles for a language for neurophysiology data. Our open-source software (Neurodata Without Borders, NWB) defines and modularizes the interdependent, yet separable, components of a data language. We demonstrate NWB's impact through unified description of neurophysiology data across diverse modalities and species. NWB exists in an ecosystem, which includes data management, analysis, visualization, and archive tools. Thus, the NWB data language enables reproduction, interchange, and reuse of diverse neurophysiology data. More broadly, the design principles of NWB are generally applicable to enhance discovery across biology through data FAIRness.

View Publication Page