Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2803 Janelia Publications

Showing 241-250 of 2803 results
Eddy/Rivas Lab
07/01/09 | A tool for identification of genes expressed in patterns of interest using the Allen Brain Atlas.
Davis FP, Eddy SR
Bioinformatics. 2009 Jul 1;25(13):1647-54. doi: 10.1093/bioinformatics/btp288

Gene expression patterns can be useful in understanding the structural organization of the brain and the regulatory logic that governs its myriad cell types. A particularly rich source of spatial expression data is the Allen Brain Atlas (ABA), a comprehensive genome-wide in situ hybridization study of the adult mouse brain. Here, we present an open-source program, ALLENMINER, that searches the ABA for genes that are expressed, enriched, patterned or graded in a user-specified region of interest.

View Publication Page
10/03/18 | A toolbox for multiplexed super-resolution imaging of the E. coli nucleoid and membrane using novel PAINT labels.
Spahn CK, Glaesmann M, Grimm JB, Ayala AX, Lavis LD, Heilemann M
Scientific Reports. 2018 Oct 03;8(1):14768. doi: 10.1038/s41598-018-33052-3

Maintenance of the bacterial homeostasis initially emanates from interactions between proteins and the bacterial nucleoid. Investigating their spatial correlation requires high spatial resolution, especially in tiny, highly confined and crowded bacterial cells. Here, we present super-resolution microscopy using a palette of fluorescent labels that bind transiently to either the membrane or the nucleoid of fixed E. coli cells. The presented labels are easily applicable, versatile and allow long-term single-molecule super-resolution imaging independent of photobleaching. The different spectral properties allow for multiplexed imaging in combination with other localisation-based super-resolution imaging techniques. As examples for applications, we demonstrate correlated super-resolution imaging of the bacterial nucleoid with the position of genetic loci, of nascent DNA in correlation to the entire nucleoid, and of the nucleoid of metabolically arrested cells. We furthermore show that DNA- and membrane-targeting labels can be combined with photoactivatable fluorescent proteins and visualise the nano-scale distribution of RNA polymerase relative to the nucleoid in drug-treated E. coli cells.

View Publication Page
Svoboda Lab
05/01/12 | A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing.
Madisen L, Mao T, Koch H, Zhuo J, Berenyi A, Fujisawa S, Hsu YA, Garcia AJ, Gu X, Zanella S, Kidney J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsáki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner EE, Zeng H
Nature Neuroscience. 2012 May;15(5):793-802. doi: 10.1038/nn.3078

Cell type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent and inducible nature of our ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to our knowledge the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.

View Publication Page
12/31/17 | A topographic axis of transcriptional identity in thalamus.
Phillips JW, Schulman A, Hara E, Liu C, Shields BC, Korff W, Lemire A, Dudman JT, Nelson SB, Hantman AW
bioRxiv. 2017 Dec 31:241315. doi: 10.1101/241315

A fundamental goal in neuroscience is to uncover common principles by which different modalities of information are processed. In the mammalian brain, thalamus acts as the essential hub for forebrain circuits handling inputs from sensory, motor, limbic, and cognitive pathways. Whether thalamus imposes common transformations on each of these modalities is unknown. Molecular characterization offers a principled approach to revealing the organization of thalamus. Using near-comprehensive and projection-specific transcriptomic sequencing, we found that almost all thalamic nuclei fit into one of three profiles. These profiles lie on a single axis of genetic variance which is aligned with the mediolateral spatial axis of thalamus. Genes defining this axis of variance include receptors and ion channels, providing a systematic diversification of input/output transformations across the topography of thalamus. Single cell transcriptional profiling revealed graded heterogeneity within individual thalamic nuclei, demonstrating that a spectrum of cell types and potentially diverse input/output transforms exist within a given thalamic nucleus. Together, our data argue for an archetypal organization of pathways serving diverse input modalities, and provides a comprehensive organizational scheme for thalamus.

View Publication Page
01/13/21 | A transcriptomic taxonomy of circadian neurons around the clock.
Ma D, Przybylski D, Abruzzi KC, Schlichting M, Li Q, Long X, Rosbash M
eLife. 2021 Jan 13;10:. doi: 10.7554/eLife.63056

Many different functions are regulated by circadian rhythms, including those orchestrated by discrete clock neurons within animal brains. To comprehensively characterize and assign cell identity to the 75 pairs of circadian neurons, we optimized a single cell RNA sequencing method and assayed clock neuron gene expression at different times of day. The data identify at least 17 clock neuron categories with striking spatial regulation of gene expression. Transcription factor regulation is prominent and likely contributes to the robust circadian oscillation of many transcripts, including those that encode cell-surface proteins previously shown to be important for cell recognition and synapse formation during development. The many other clock-regulated genes also constitute an important resource for future mechanistic and functional studies between clock neurons and/or for temporal signaling to circuits elsewhere in the fly brain.

View Publication Page
Singer Lab
06/20/18 | A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons.
Das S, Moon HC, Singer RH, Park HY
Science Advances. 2018 Jun;4(6):eaar3448. doi: 10.1126/sciadv.aar3448

Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

View Publication Page
03/16/25 | A tunable and versatile chemogenetic near infrared fluorescent reporter
Lina El Hajji , Benjamin Bunel , Octave Joliot , Chenge Li , Alison G. Tebo , Christine Rampon , Michel Volovitch , Evelyne Fischer , Nicolas Pietrancosta , Franck Perez , Xavier Morin , Sophie Vriz , Arnaud Gautier
Nat Commun. 2025 Mar 16:. doi: 10.1038/s41467-025-58017-9

Near-infrared (NIR) fluorescent reporters open interesting perspectives for multiplexed imaging with higher contrast and depth using less toxic light. Here, we propose nirFAST, a small (14 kDa) chemogenetic NIR fluorescent reporter, displaying higher cellular brightness compared to top-performing NIR fluorescent proteins. nirFAST binds and stabilizes the fluorescent state of synthetic cell permeant fluorogenic chromophores (so-called fluorogens), otherwise dark when free. nirFAST displays tunable NIR, far-red or red emission through change of fluorogen. nirFAST allows imaging and spectral multiplexing in live cultured mammalian cells, chicken embryo tissues and zebrafish larvae. Its suitability for stimulated emission depletion nanoscopy enabled protein imaging with subdiffraction resolution in live cells. nirFAST enabled the design of a two-color cell cycle indicator for monitoring the different phases of the cell cycle. Finally, bisection of nirFAST allowed the design of a chemically induced dimerization technology with NIR fluorescence readout, enabling the control and visualization of protein proximity.

bioRxiv preprint: https://doi.org/10.1101/2024.04.05.588310

View Publication Page
Gonen Lab
08/13/14 | A type VI secretion-related pathway in bacteroidetes mediates interbacterial antagonism.
Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD
Cell Host Microbe. 2014 Aug 13;16(2):227-36. doi: 10.1016/j.chom.2014.07.007

Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.

View Publication Page
02/27/17 | A variant Sp1 (R218Q) transcription factor might enhance HbF expression in β(0) -thalassaemia homozygotes.
Jiang Z, Luo H, Farrell JJ, Zhang Z, Schulz VP, Albarawi D, Steinberg MH, Al-Allawi NA, Gallagher PG, Forget BG, Chui DH
British Journal of Haematology. 2017 Feb 27;180(5):755-7. doi: 10.1111/bjh.14445
06/21/24 | A vast space of compact strategies for highly efficient decisions
Tzuhsuan Ma , Ann M Hermundstad
Sci. Adv.. 2024 Jun 21;10(25):. doi: 10.1101/2022.08.10.503471

Inference-based decision-making, which underlies a broad range of behavioral tasks, is typically studied using a small number of handcrafted models. We instead enumerate a complete ensemble of strategies that could be used to effectively, but not necessarily optimally, solve a dynamic foraging task. Each strategy is expressed as a behavioral "program" that uses a limited number of internal states to specify actions conditioned on past observations. We show that the ensemble of strategies is enormous-comprising a quarter million programs with up to five internal states-but can nevertheless be understood in terms of algorithmic "mutations" that alter the structure of individual programs. We devise embedding algorithms that reveal how mutations away from a Bayesian-like strategy can diversify behavior while preserving performance, and we construct a compositional description to link low-dimensional changes in algorithmic structure with high-dimensional changes in behavior. Together, this work provides an alternative approach for understanding individual variability in behavior across animals and tasks.

View Publication Page