Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2752 Janelia Publications

Showing 241-250 of 2752 results
01/13/21 | A transcriptomic taxonomy of circadian neurons around the clock.
Ma D, Przybylski D, Abruzzi KC, Schlichting M, Li Q, Long X, Rosbash M
eLife. 2021 Jan 13;10:. doi: 10.7554/eLife.63056

Many different functions are regulated by circadian rhythms, including those orchestrated by discrete clock neurons within animal brains. To comprehensively characterize and assign cell identity to the 75 pairs of circadian neurons, we optimized a single cell RNA sequencing method and assayed clock neuron gene expression at different times of day. The data identify at least 17 clock neuron categories with striking spatial regulation of gene expression. Transcription factor regulation is prominent and likely contributes to the robust circadian oscillation of many transcripts, including those that encode cell-surface proteins previously shown to be important for cell recognition and synapse formation during development. The many other clock-regulated genes also constitute an important resource for future mechanistic and functional studies between clock neurons and/or for temporal signaling to circuits elsewhere in the fly brain.

View Publication Page
Singer Lab
06/20/18 | A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons.
Das S, Moon HC, Singer RH, Park HY
Science Advances. 2018 Jun;4(6):eaar3448. doi: 10.1126/sciadv.aar3448

Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

View Publication Page
03/16/25 | A tunable and versatile chemogenetic near infrared fluorescent reporter
Lina El Hajji , Benjamin Bunel , Octave Joliot , Chenge Li , Alison G. Tebo , Christine Rampon , Michel Volovitch , Evelyne Fischer , Nicolas Pietrancosta , Franck Perez , Xavier Morin , Sophie Vriz , Arnaud Gautier
Nat Commun. 2025 Mar 16:. doi: 10.1038/s41467-025-58017-9

Near-infrared (NIR) fluorescent reporters open interesting perspectives for multiplexed imaging with higher contrast and depth using less toxic light. Here, we propose nirFAST, a small (14 kDa) chemogenetic NIR fluorescent reporter, displaying higher cellular brightness compared to top-performing NIR fluorescent proteins. nirFAST binds and stabilizes the fluorescent state of synthetic cell permeant fluorogenic chromophores (so-called fluorogens), otherwise dark when free. nirFAST displays tunable NIR, far-red or red emission through change of fluorogen. nirFAST allows imaging and spectral multiplexing in live cultured mammalian cells, chicken embryo tissues and zebrafish larvae. Its suitability for stimulated emission depletion nanoscopy enabled protein imaging with subdiffraction resolution in live cells. nirFAST enabled the design of a two-color cell cycle indicator for monitoring the different phases of the cell cycle. Finally, bisection of nirFAST allowed the design of a chemically induced dimerization technology with NIR fluorescence readout, enabling the control and visualization of protein proximity.

bioRxiv preprint: https://doi.org/10.1101/2024.04.05.588310

View Publication Page
Gonen Lab
08/13/14 | A type VI secretion-related pathway in bacteroidetes mediates interbacterial antagonism.
Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD
Cell Host Microbe. 2014 Aug 13;16(2):227-36. doi: 10.1016/j.chom.2014.07.007

Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.

View Publication Page
02/27/17 | A variant Sp1 (R218Q) transcription factor might enhance HbF expression in β(0) -thalassaemia homozygotes.
Jiang Z, Luo H, Farrell JJ, Zhang Z, Schulz VP, Albarawi D, Steinberg MH, Al-Allawi NA, Gallagher PG, Forget BG, Chui DH
British Journal of Haematology. 2017 Feb 27;180(5):755-7. doi: 10.1111/bjh.14445
06/21/24 | A vast space of compact strategies for highly efficient decisions
Tzuhsuan Ma , Ann M Hermundstad
Sci. Adv.. 2024 Jun 21;10(25):. doi: 10.1101/2022.08.10.503471

Inference-based decision-making, which underlies a broad range of behavioral tasks, is typically studied using a small number of handcrafted models. We instead enumerate a complete ensemble of strategies that could be used to effectively, but not necessarily optimally, solve a dynamic foraging task. Each strategy is expressed as a behavioral "program" that uses a limited number of internal states to specify actions conditioned on past observations. We show that the ensemble of strategies is enormous-comprising a quarter million programs with up to five internal states-but can nevertheless be understood in terms of algorithmic "mutations" that alter the structure of individual programs. We devise embedding algorithms that reveal how mutations away from a Bayesian-like strategy can diversify behavior while preserving performance, and we construct a compositional description to link low-dimensional changes in algorithmic structure with high-dimensional changes in behavior. Together, this work provides an alternative approach for understanding individual variability in behavior across animals and tasks.

View Publication Page
02/06/20 | A versatile vector system for the fast generation of knock-in cell lines with CRISPR.
Perez-Leal O, Nixon-Abell J, Barrero CA, Gordon J, Rico MC
bioRxiv. 2020 Feb 06:. doi: 10.1101/2020.02.06.927384

Until recent advancements in genome editing via CRISPR/Cas9 technology, understanding protein function typically involved artificially overexpressing proteins of interest. Despite that CRISPR/Cas9 has ushered in a new era of possibilities for modifying endogenous genes with labeling tags (knock-in) to more accurately study proteins under physiological conditions, the technique is largely underutilized due to its tedious, multi-step process. Here we outline a homologous recombination system (FAST-HDR) to be used in combination with CRISPR/Cas9 that significantly simplifies and accelerates this process while introducing multiplexing to allow live-cell studies of 3 endogenous proteins within the same cell line. Furthermore, the recombination vectors are assembled in a single reaction that is enhanced for eliminating false positives and reduces the overall creation time for the knockin cell line from ~8 weeks to <15 days. Finally, the system utilizes a modular construction to allow for seamlessly swapping labeling tags to ensure flexibility according to the area under study. We validated this new methodology by developing advanced cell lines with 3 fluorescent-labeled endogenous proteins that support high-content phenotypic drug screening without using antibodies or exogenous staining. Therefore, Fast-HDR cell lines provide a robust alternative for studying multiple proteins of interest in live cells without artificially overexpressing labeled proteins.

View Publication Page
08/07/13 | A visual motion detection circuit suggested by Drosophila connectomics.
Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang L, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB
Nature. 2013 Aug 7;500(7461):175–81. doi: doi:10.1038/nature12450

Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive. Here we develop a semi-automated pipeline using electron microscopy to reconstruct a connectome, containing 379 neurons and 8,637 chemical synaptic contacts, within the Drosophila optic medulla. By matching reconstructed neurons to examples from light microscopy, we assigned neurons to cell types and assembled a connectome of the repeating module of the medulla. Within this module, we identified cell types constituting a motion detection circuit, and showed that the connections onto individual motion-sensitive neurons in this circuit were consistent with their direction selectivity. Our results identify cellular targets for future functional investigations, and demonstrate that connectomes can provide key insights into neuronal computations.

View Publication Page
05/30/10 | A wireless neural/EMG telemetry system for freely moving insects.
Reid R. Harrison , Ryan J. Kier , Anthony Leonardo , Haleh Fotowat , Raymond Chan , Fabrizio Gabbiani
IEEE International Symposium on Circuits and Systems. 2010 May 30:. doi: 10.1109/ISCAS.2010.5538034

We have developed a miniature telemetry system that captures neural, EMG, and acceleration signals from a freely moving insect and transmits the data wirelessly to a remote digital receiver. The system is based on a custom low-power integrated circuit that amplifies and digitizes four biopotential signals as well as three acceleration signals from an off-chip MEMS accelerometer, and transmits this information over a wireless 920-MHz telemetry link. The unit weighs 0.79 g and runs for two hours on two small batteries. We have used this system to monitor neural and EMG signals in jumping and flying locusts.

View Publication Page
Gonen Lab
10/04/16 | Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED.
Sawaya MR, Rodriguez J, Cascio D, Collazo MJ, Shi D, Reyes FE, Hattne J, Gonen T, Eisenberg DS
Proceedings of the National Academy of Sciences of the United States of America. 2016 Oct 04;113(40):11232-6. doi: 10.1073/pnas.1606287113

Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.

View Publication Page