Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2795 Janelia Publications

Showing 2481-2490 of 2795 results
08/17/18 | The development and enhancement of FRAP as a key tool for investigating protein dynamics.
Lippincott-Schwartz J, Snapp EL, Phair RD
Biophysical Journal. 2018 Aug 17;115(7):1146-55. doi: 10.1016/j.bpj.2018.08.007

The saga of fluorescence recovery after photobleaching (FRAP) illustrates how disparate technical developments impact science. Starting with the classic 1976 Axelrod et al. work in Biophysical Journal, FRAP (originally fluorescence photobleaching recovery) opened the door to extraction of quantitative information from photobleaching experiments, laying the experimental and theoretical groundwork for quantifying both the mobility and the mobile fraction of a labeled population of proteins. Over the ensuing years, FRAP's reach dramatically expanded, with new developments in GFP technology and turn-key confocal microscopy, which enabled measurement of protein diffusion and binding/dissociation rates in virtually every compartment within the cell. The FRAP technique and data catalyzed an exchange of ideas between biophysicists studying membrane dynamics, cell biologists focused on intracellular dynamics, and systems biologists modeling the dynamics of cell activity. The outcome transformed the field of cellular biology, leading to a fundamental rethinking of long-held theories of cellular dynamism. Here, we review the pivotal FRAP studies that made these developments and conceptual changes possible, which gave rise to current models of complex cell dynamics.

View Publication Page
Riddiford Lab
01/01/14 | The developmental control of size in insects.
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V
Wiley Interdisciplinary Reviews: Developmental Biology. 2014 Jan/Feb;3(1):113-34. doi: 10.1002/wdev.124

The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse. WIREs Dev Biol 2014, 3:113–134. doi: 10.1002/wdev.124

View Publication Page
01/04/16 | The Dfam database of repetitive DNA families.
Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, Smit AF, Wheeler TJ
Nucleic Acids Research. 2016 Jan 4;44(D1):D81-9. doi: 10.1093/nar/gkv1272

Repetitive DNA, especially that due to transposable elements (TEs), makes up a large fraction of many genomes. Dfam is an open access database of families of repetitive DNA elements, in which each family is represented by a multiple sequence alignment and a profile hidden Markov model (HMM). The initial release of Dfam, featured in the 2013 NAR Database Issue, contained 1143 families of repetitive elements found in humans, and was used to produce more than 100 Mb of additional annotation of TE-derived regions in the human genome, with improved speed. Here, we describe recent advances, most notably expansion to 4150 total families including a comprehensive set of known repeat families from four new organisms (mouse, zebrafish, fly and nematode). We describe improvements to coverage, and to our methods for identifying and reducing false annotation. We also describe updates to the website interface. The Dfam website has moved to http://dfam.org. Seed alignments, profile HMMs, hit lists and other underlying data are available for download.

View Publication Page
07/08/20 | The Drosophila mushroom body: From architecture to algorithm in a learning circuit.
Modi MN, Shuai Y, Turner GC
Annual Review of Neuroscience. 2020 Jul 08;43:465-484. doi: 10.1146/annurev-neuro-080317-0621333

The brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for learning and revealed the following key operations: ) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; ) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; ) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and ) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains.

View Publication Page
11/07/14 | The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.
DeSalvo MK, Hindle SJ, Rusan ZM, Orng S, Eddison M, Halliwill K, Bainton RJ
Frontiers in Neuroscience. 2014 Nov 7;8:346. doi: 10.3389/fnins.2014.00346

Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

View Publication Page
Truman LabRiddiford Lab
07/01/09 | The ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs.
Mirth CK, Truman JW, Riddiford LM
Development. 2009 Jul;136:2345-53. doi: 10.1242/dev.032672

In holometabolous insects, a species-specific size, known as critical weight, needs to be reached for metamorphosis to be initiated in the absence of further nutritional input. Previously, we found that reaching critical weight depends on the insulin-dependent growth of the prothoracic glands (PGs) in Drosophila larvae. Because the PGs produce the molting hormone ecdysone, we hypothesized that ecdysone signaling switches the larva to a nutrition-independent mode of development post-critical weight. Wing discs from pre-critical weight larvae [5 hours after third instar ecdysis (AL3E)] fed on sucrose alone showed suppressed Wingless (WG), Cut (CT) and Senseless (SENS) expression. Post-critical weight, a sucrose-only diet no longer suppressed the expression of these proteins. Feeding larvae that exhibit enhanced insulin signaling in their PGs at 5 hours AL3E on sucrose alone produced wing discs with precocious WG, CT and SENS expression. In addition, knocking down the Ecdysone receptor (EcR) selectively in the discs also promoted premature WG, CUT and SENS expression in the wing discs of sucrose-fed pre-critical weight larvae. EcR is involved in gene activation when ecdysone is present, and gene repression in its absence. Thus, knocking down EcR derepresses genes that are normally repressed by unliganded EcR, thereby allowing wing patterning to progress. In addition, knocking down EcR in the wing discs caused precocious expression of the ecdysone-responsive gene broad. These results suggest that post-critical weight, EcR signaling switches wing discs to a nutrition-independent mode of development via derepression.

View Publication Page
11/21/25 | The efficacy of longevity interventions in Caenorhabditis elegans is determined by the early life activity of RNA splicing factors.
Dutta S, Perez Matos MC, Heintz C, Mutlu AS, Piper M, Mistry M, Sharma A, Morrow CS, Smith H, Howell P, Sehgal R, Lanjuin A, Wang MC, Mair WB
PLoS Biol. 2025 Nov 21;23(11):e3003504. doi: 10.1371/journal.pbio.3003504

Geroscience aims to target the aging process to extend healthspan. However, even isogenic individuals show heterogeneity in natural aging rate and responsiveness to pro-longevity interventions, limiting translational potential. Using RNAseq analysis of young, isogenic, subpopulations of Caenorhabditis elegans selected solely on the basis of the splicing pattern of an in vivo minigene reporter that is predictive of future life expectancy, we find a strong correlation in young animals between predicted life span and alternative splicing of mRNAs related to lipid metabolism. The activity of two RNA splicing factors, Reversed Polarity-1 (REPO-1) and Splicing Factor 1 (SFA-1), early in life is necessary for C. elegans response to specific longevity interventions and leads to context-specific changes to fat content that is mirrored by knockdown of their direct target POD-2/ACC1. Moreover, POD-2/ACC1 is required for the same longevity interventions as REPO-1/SFA-1. In addition, early inhibition of REPO-1 renders animals refractory to late onset suppression of the TORC1 pathway. Together, we propose that splicing factor activity establishes a cellular landscape early in life that enables responsiveness to specific longevity interventions and may explain variance in efficacy between individuals.

View Publication Page
12/01/12 | The effort to make mosaic analysis a household tool.
Xu T, Rubin GM
Development. 2012 Dec;139(24):4501-3. doi: 10.1242/dev.085183

The analysis of genetic mosaics, in which an animal carries populations of cells with differing genotypes, is a powerful tool for understanding developmental and cell biology. In 1990, we set out to improve the methods used to make genetic mosaics in Drosophila by taking advantage of recently developed approaches for genome engineering. These efforts led to the work described in our 1993 Development paper.

View Publication Page
Rubin LabReiser LabFly Functional Connectome
04/05/17 | The emergence of directional selectivity in the visual motion pathway of Drosophila.
Strother JA, Wu S, Wong AM, Nern A, Rogers EM, Le JQ, Rubin GM, Reiser MB
Neuron. 2017 Apr 05;94(1):168-182.e10. doi: 10.1016/j.neuron.2017.03.010

The perception of visual motion is critical for animal navigation, and flies are a prominent model system for exploring this neural computation. In Drosophila, the T4 cells of the medulla are directionally selective and necessary for ON motion behavioral responses. To examine the emergence of directional selectivity, we developed genetic driver lines for the neuron types with the most synapses onto T4 cells. Using calcium imaging, we found that these neuron types are not directionally selective and that selectivity arises in the T4 dendrites. By silencing each input neuron type, we identified which neurons are necessary for T4 directional selectivity and ON motion behavioral responses. We then determined the sign of the connections between these neurons and T4 cells using neuronal photoactivation. Our results indicate a computational architecture for motion detection that is a hybrid of classic theoretical models.

View Publication Page
04/08/13 | The ENCODE project: missteps overshadowing a success.
Eddy SR
Current Biology. 2013 Apr 8;23(7):R259-61. doi: 10.1016/j.cub.2013.03.023

Two clichés of science journalism have now played out around the ENCODE project. ENCODE’s publicity first presented a misleading "all the textbooks are wrong" narrative about noncoding human DNA. Now several critiques of ENCODE’s narrative have been published, and one was so vitriolic that it fueled "undignified academic squabble" stories that focused on tone more than substance. Neither story line does justice to our actual understanding of genomes, to ENCODE’s results, or to the role of big science in biology.

View Publication Page