Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2556 Janelia Publications

Showing 2491-2500 of 2556 results
12/18/12 | Visual neuroscience: a moving story of neuromodulation.
Jayaraman V
Current Biology. 2012 Dec 18;22(24):R1057-9. doi: 10.1016/j.cub.2012.11.041

The visual neurons of many animals process sensory input differently depending on the animal’s state of locomotion. Now, new work in Drosophila melanogaster shows that neuromodulatory neurons active during flight boost responses of neurons in the visual system.

View Publication Page
Zuker LabReiser Lab
06/09/11 | Visual place learning in Drosophila melanogaster.
Ofstad TA, Zuker CS, Reiser MB
Nature. 2011 Jun 9;474(7350):204-7. doi: 10.1038/nature10131

The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. The impressive navigational abilities of ants, bees, wasps and other insects demonstrate that insects are capable of visual place learning, but little is known about the underlying neural circuits that mediate these behaviours. Drosophila melanogaster (common fruit fly) is a powerful model organism for dissecting the neural circuitry underlying complex behaviours, from sensory perception to learning and memory. Drosophila can identify and remember visual features such as size, colour and contour orientation. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain, we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and establish Drosophila as a powerful model for the study of spatial memories.

View Publication Page
08/22/22 | Visual projection neuron convergence and compensation in developing sensorimotor circuits in the Drosophila optic glomeruli
Brennan W. McFarland , HyoJong Jang , Natalie Smolin , Tanja A. Godenschwege , Aljoscha Nern , Yerbol Z. Kurmangaliyev , Catherine R. von Reyn

Visual features detected by the early visual system must be combined into higher order representations to guide behavioral decision. Although key developmental mechanisms that enable the separation of visual feature channels in early visual circuits have been discovered, relatively little is known about the mechanisms that underlie their convergence in later stages of visual processing. Here we explore the development of a functionally well-characterized sensorimotor circuit in Drosophila melanogaster, the convergence of visual projection neurons (VPNs) onto the dendrites of a large descending neuron called the giant fiber (GF). We find two VPNs encoding different visual features that target the same giant fiber dendrite establish their territories on the dendrite, in part, through sequential axon arrival during development prior to synaptogenesis. Physical occupancy is important to maintain territories, as we find the ablation of one VPN results in expanded dendrite territory of the remaining VPN, and that this compensation enables the GF to remain responsive to ethologically relevant visual stimuli. Our data highlight temporal mechanisms for visual feature convergence and promote the GF circuit, and the Drosophila optic glomeruli where VPN to GF connectivity resides, as an ideal developmental model for investigating complex wiring programs and plasticity in visual feature convergence.

View Publication Page
12/28/16 | Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs.
Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, Rubin GM
eLife. 2016 Dec 28;5:. doi: 10.7554/eLife.21022

Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors.

View Publication Page
07/04/18 | Visual projection neurons mediating directed courtship in Drosophila.
Ribeiro IM, Drews M, Bahl A, Machacek C, Borst A, Dickson BJ
Cell. 2018 Jul 04;174(3):607-21. doi: 10.1016/j.cell.2018.06.020

Many animals rely on vision to detect, locate, and track moving objects. In Drosophila courtship, males primarily use visual cues to orient toward and follow females and to select the ipsilateral wing for courtship song. Here, we show that the LC10 visual projection neurons convey essential visual information during courtship. Males with LC10 neurons silenced are unable to orient toward or maintain proximity to the female and do not predominantly use the ipsilateral wing when singing. LC10 neurons preferentially respond to small moving objects using an antagonistic motion-based center-surround mechanism. Unilateral activation of LC10 neurons recapitulates the orienting and ipsilateral wing extension normally elicited by females, and the potency with which LC10 induces wing extension is enhanced in a state of courtship arousal controlled by male-specific P1 neurons. These data suggest that LC10 is a major pathway relaying visual input to the courtship circuits in the male brain.

View Publication Page
06/01/12 | Visualization and analysis of 3D microscopic images.
Long F, Zhou J, Peng H
PLoS Computational Biology. 2012 Jun;8:e1002519. doi: 10.1371/journal.pcbi.1002519

In a wide range of biological studies, it is highly desirable to visualize and analyze three-dimensional (3D) microscopic images. In this primer, we first introduce several major methods for visualizing typical 3D images and related multi-scale, multi-time-point, multi-color data sets. Then, we discuss three key categories of image analysis tasks, namely segmentation, registration, and annotation. We demonstrate how to pipeline these visualization and analysis modules using examples of profiling the single-cell gene-expression of C. elegans and constructing a map of stereotyped neurite tracts in a fruit fly brain.

View Publication Page
03/10/15 | Visualization and neuronal cell targeting during electrophysiological recordings facilitated by quantum dots.
Field LD, Andrasfalvy BK, Galiñanes GL, Huber D, Barbic M, Macklin JJ, Susumu K, Delehanty JB, Huston AL, Makara JK, Medintz IL
Proceedings of SPIE. 2015 Mar 10;9305:9305Y. doi: 10.1117/12.2076934

The simultaneous visualization, identification and targeting of neurons during patch clamp-mediated electrophysiological recordings is a basic technique in neuroscience, yet it is often complicated by the inability to visualize the pipette tip, particularly in deep brain tissue. Here we demonstrate a novel approach in which fluorescent quantum dot probes are used to coat pipettes prior to their use. The strong two-photon absorption cross sections of the quantum dots afford robust contrast at significantly deeper penetration depths than current methods allow. We demonstrate the utility of this technique in multiple recording formats both in vitro and in vivo where imaging of the pipettes is achieved at remarkable depths (up to 800 microns). Notably, minimal perturbation of cellular physiology is observed over the hours-long time course of neuronal recordings. We discuss our results within the context of the role that quantum dot nanoprobes may play in understanding neuronal cell physiology.

View Publication Page
01/28/16 | Visualization and quantification for interactive analysis of neural connectivity in Drosophila.
Swoboda N, Moosburner J, Bruckner S, Yu J, Dickson BJ, Bühler K
Computer Graphics Forum. 2016 Jan 28:. doi: 10.1111/cgf.12792

Neurobiologists investigate the brain of the common fruit fly Drosophila melanogaster to discover neural circuits and link them to complex behaviour. Formulating new hypotheses about connectivity requires potential connectivity information between individual neurons, indicated by overlaps of arborizations of two or more neurons. As the number of higher order overlaps (i.e. overlaps of three or more arborizations) increases exponentially with the number of neurons under investigation, visualization is impeded by clutter and quantification becomes a burden. Existing solutions are restricted to visual or quantitative analysis of pairwise overlaps, as they rely on precomputed overlap data. We present a novel tool that complements existing methods for potential connectivity exploration by providing for the first time the possibility to compute and visualize higher order arborization overlaps on the fly and to interactively explore this information in both its spatial anatomical context and on a quantitative level. Qualitative evaluation by neuroscientists and non-experts demonstrated the utility and usability of the tool.

View Publication Page
01/24/14 | Visualization of dynamics of single endogenous mRNA labeled in live mouse.
Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C, Lopez-Jones M, Meng X, Singer RH
Science. 2014 Jan 24;343(6169):422-4. doi: 10.1126/science.1239200

The transcription and transport of messenger RNA (mRNA) are critical steps in regulating the spatial and temporal components of gene expression, but it has not been possible to observe the dynamics of endogenous mRNA in primary mammalian tissues. We have developed a transgenic mouse in which all β-actin mRNA is fluorescently labeled. We found that β-actin mRNA in primary fibroblasts localizes predominantly by diffusion and trapping as single mRNAs. In cultured neurons and acute brain slices, we found that multiple β-actin mRNAs can assemble together, travel by active transport, and disassemble upon depolarization by potassium chloride. Imaging of brain slices revealed immediate early induction of β-actin transcription after depolarization. Studying endogenous mRNA in live mouse tissues provides insight into its dynamic regulation within the context of the cellular and tissue microenvironment.

View Publication Page
03/22/24 | Visualization of Glutamatergic Neurotransmission in Diverse Model Organisms with Genetically Encoded Indicators
Aggarwal A, Chan J, Waring AK, Negrean A, Marvin JS, Podgorski K, Looger LL, Kukley M
New Technologies for Glutamate Interaction: Neurons and Glia;2780:3–34. doi: 10.1007/978-1-0716-3742-5_1

Glutamate is the principal excitatory neurotransmitter, and occasionally subserves inhibitory roles, in the vertebrate nervous system. Glutamatergic synapses are dense in the vertebrate brain, at \textasciitilde1/μm3. Glutamate is released from and onto diverse components of the nervous system, including neurons, glia, and other cells. Methods for glutamate detection are critically important for understanding the function of synapses and neural circuits in normal physiology, development, and disease. Here we describe the development, optimization, and deployment of genetically encoded fluorescent glutamate indicators. We review the theoretical considerations governing glutamate sensor properties from first principles of synapse biology, microscopy, and protein structure-function relationships. We provide case studies of the state-of-the-art iGluSnFR glutamate sensor, encompassing design and optimization, mechanism of action, in vivo imaging, data analysis, and future directions. We include detailed protocols for iGluSnFR imaging in common preparations (bacteria, cell culture, and brain slices) and model organisms (worm, fly, fish, rodent).

View Publication Page