Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2529 Janelia Publications

Showing 381-390 of 2529 results
Chklovskii LabFlyEM
08/06/15 | Automatic adaptation to fast input changes in a time-invariant neural circuit.
Bharioke A, Chklovskii DB
PLoS Computational Biology. 2015 Aug 6;11(8):e1004315. doi: 10.1371/journal.pcbi.1004315
07/01/21 | Automatic Detection of Synaptic Partners in a Whole-Brain Drosophila EM Dataset
Buhmann J, Sheridan A, Gerhard S, Krause R, Nguyen T, Heinrich L, Schlegel P, Lee WA, Wilson R, Saalfeld S, Jefferis G, Bock D, Turaga S, Cook M, Funke J
Nature Methods. 2021 Jul 1;18(7):771-4. doi: 10.1038/s41592-021-01183-7

The study of neural circuits requires the reconstruction of neurons and the identification of synaptic connections between them. To scale the reconstruction to the size of whole-brain datasets, semi-automatic methods are needed to solve those tasks. Here, we present an automatic method for synaptic partner identification in insect brains, which uses convolutional neural networks to identify post-synaptic sites and their pre-synaptic partners. The networks can be trained from human generated point annotations alone and requires only simple post-processing to obtain final predictions. We used our method to extract 244 million putative synaptic partners in the fifty-teravoxel full adult fly brain (FAFB) electron microscopy (EM) dataset and evaluated its accuracy on 146,643 synapses from 702 neurons with a total cable length of 312 mm in four different brain regions. The predicted synaptic connections can be used together with a neuron segmentation to infer a connectivity graph with high accuracy: 96% of edges between connected neurons are correctly classified as weakly connected (less than five synapses) and strongly connected (at least five synapses). Our synaptic partner predictions for the FAFB dataset are publicly available, together with a query library allowing automatic retrieval of up- and downstream neurons.

View Publication Page
Grigorieff Lab
11/01/15 | Automatic estimation and correction of anisotropic magnification distortion in electron microscopes.
Grant T, Grigorieff N
Journal of Structural Biology. 2015 Nov;192(2):204-8. doi: 10.1016/j.jsb.2015.08.006

We demonstrate a significant anisotropic magnification distortion, found on an FEI Titan Krios microscope and affecting magnifications commonly used for data acquisition on a Gatan K2 Summit detector. We describe a program (mag_distortion_estimate) to automatically estimate anisotropic magnification distortion from a set of images of a standard gold shadowed diffraction grating. We also describe a program (mag_distortion_correct) to correct for the estimated distortion in collected images. We demonstrate that the distortion present on the Titan Krios microscope limits the resolution of a set of rotavirus VP6 images to ∼7 Å, which increases to ∼3 Å following estimation and correction of the distortion. We also use a 70S ribosome sample to demonstrate that in addition to affecting resolution, magnification distortion can also interfere with the classification of heterogeneous data.

View Publication Page
07/10/07 | Automatic image analysis for gene expression patterns of fly embryos.
Peng H, Long F, Zhou J, Leung G, Eisen MB, Myers EW
BMC Cell Biology. 2007 Jul 10;8(Supplement 1):S7. doi: 10.1007/s12021-010-9090-x

Staining the mRNA of a gene via in situ hybridization (ISH) during the development of a D. melanogaster embryo delivers the detailed spatio-temporal pattern of expression of the gene. Many biological problems such as the detection of co-expressed genes, co-regulated genes, and transcription factor binding motifs rely heavily on the analyses of these image patterns. The increasing availability of ISH image data motivates the development of automated computational approaches to the analysis of gene expression patterns.

View Publication Page
01/01/10 | Automatic neuron tracing in volumetric microscopy images with anisotropic path searching.
Xie J, Zhao T, Lee T, Myers E, Peng H
Medical Image Computing and Computer-Assisted Intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention. 2010;13:472-9

Full reconstruction of neuron morphology is of fundamental interest for the analysis and understanding of neuron function. We have developed a novel method capable of tracing neurons in three-dimensional microscopy data automatically. In contrast to template-based methods, the proposed approach makes no assumptions on the shape or appearance of neuron’s body. Instead, an efficient seeding approach is applied to find significant pixels almost certainly within complex neuronal structures and the tracing problem is solved by computing an graph tree structure connecting these seeds. In addition, an automated neuron comparison method is introduced for performance evaluation and structure analysis. The proposed algorithm is computationally efficient. Experiments on different types of data show promising results.

View Publication Page
09/05/14 | Automatic neuron type identification by neurite localization in the Drosophila medulla.
Plaza SM, Zhao T
arXiv. 2014 Sep 5:arXiv:1409.1892 [q-bio.NC]

Mapping the connectivity of neurons in the brain (i.e., connectomics) is a challenging problem due to both the number of connections in even the smallest organisms and the nanometer resolution required to resolve them. Because of this, previous connectomes contain only hundreds of neurons, such as in the C.elegans connectome. Recent technological advances will unlock the mysteries of increasingly large connectomes (or partial connectomes). However, the value of these maps is limited by our ability to reason with this data and understand any underlying motifs. To aid connectome analysis, we introduce algorithms to cluster similarly-shaped neurons, where 3D neuronal shapes are represented as skeletons. In particular, we propose a novel location-sensitive clustering algorithm. We show clustering results on neurons reconstructed from the Drosophila medulla that show high-accuracy.

View Publication Page
03/01/07 | Automatic recognition and annotation of gene expression patterns of fly embryos.
Zhou J, Peng H
Bioinformatics. 2007 Mar 1;23(5):589-96. doi: 10.1007/s12021-010-9090-x

Gene expression patterns obtained by in situ mRNA hybridization provide important information about different genes during Drosophila embryogenesis. So far, annotations of these images are done by manually assigning a subset of anatomy ontology terms to an image. This time-consuming process depends heavily on the consistency of experts.

View Publication Page
04/02/08 | Automatic recognition of cells (ARC) for 3D images of C. elegans.
Long F, Peng H, Liu X, Kim SK, Myers E
Proceedings of the 2008 Conference on Computational Molecular Biology (RECOMB) (Singapore, 2008). 2008 Apr 2:

The development of high-resolution microscopy makes possible the high-throughput screening of cellular information, such as gene expression at single cell resolution. One of the critical enabling techniques yet to be developed is the automatic recognition or annotation of specific cells in a 3D image stack. In this paper, we present a novel graph-based algorithm, ARC, that determines cell identities in a 3D confocal image of C. elegans based on their highly stereotyped arrangement. This is an essential step in our work on gene expression analysis of C. elegans at the resolution of single cells. Our ARC method integrates both the absolute and relative spatial locations of cells in a C. elegans body. It uses a marker-guided, spatially-constrained, two-stage bipartite matching to find the optimal match between cells in a subject image and cells in 15 template images that have been manually annotated and vetted. We applied ARC to the recognition of cells in 3D confocal images of the first larval stage (L1) of C. elegans hermaphrodites, and achieved an average accuracy of 94.91%.

View Publication Page
Sternson Lab
06/15/10 | Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model.
Peng H, Ruan Z, Atasoy D, Sternson S
Bioinformatics. 2010 Jun 15;26:i38-46. doi: 10.1093/bioinformatics/btq212

Digital reconstruction of 3D neuron structures is an important step toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low single-to-noise ratio and discontinued segments of neurite patterns.

View Publication Page
04/12/07 | Automatic segmentation of nuclei in 3D microscopy images of C. elegans.
Long F, Peng H, Myers E
2007 4TH IEEE International Symposium on Biomedical Imaging: Macro to Nano, VOLS 1-3. 2007 Apr 12-15:536-9

Automatic segmentation of nuclei in 3D microscopy images is essential for many biological studies including high throughput analysis of gene expression level, morphology, and phenotypes in single cell level. The complexity and variability of the microscopy images present many difficulties to the traditional image segmentation methods. In this paper, we present a new method based on 3D watershed algorithm to segment such images. By using both the intensity information of the image and the geometry information of the appropriately detected foreground mask, our method is robust to intensity fluctuation within nuclei and at the same time sensitive to the intensity and geometrical cues between nuclei. Besides, the method can automatically correct potential segmentation errors by using several post-processing steps. We tested this algorithm on the 3D confocal images of C.elegans, an organism that has been widely used in biological studies. Our results show that the algorithm can segment nuclei in high accuracy despite the non-uniform background, tightly clustered nuclei with different sizes and shapes, fluctuated intensities, and hollow-shaped staining patterns in the images.

View Publication Page