Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2529 Janelia Publications

Showing 661-670 of 2529 results
11/27/19 | Cryo-EM structure of the human FLCN-FNIP2-Rag-Ragulator complex.
Shen K, Rogala KB, Chou H, Huang RK, Yu Z, Sabatini DM
Cell. 2019 Nov 27;179(6):1319-29. doi: 10.1016/j.cell.2019.10.036
12/02/20 | Cryo-EM structure of the inhibited (10S) form of myosin II.
Yang S, Tiwari P, Lee KH, Sato O, Ikebe M, Padrón R, Craig R
Nature. 2020 Dec 02;588(7838):521-25. doi: 10.1038/s41586-020-3007-0

Myosin II is the motor protein that enables muscle cells to contract and nonmuscle cells to move and change shape. The molecule has two identical heads attached to an elongated tail, and can exist in two conformations: 10S and 6S, named for their sedimentation coefficients. The 6S conformation has an extended tail and assembles into polymeric filaments, which pull on actin filaments to generate force and motion. In 10S myosin, the tail is folded into three segments and the heads bend back and interact with each other and the tail, creating a compact conformation in which ATPase activity, actin activation and filament assembly are all highly inhibited. This switched-off structure appears to function as a key energy-conserving storage molecule in muscle and nonmuscle cells, which can be activated to form functional filaments as needed-but the mechanism of its inhibition is not understood. Here we have solved the structure of smooth muscle 10S myosin by cryo-electron microscopy with sufficient resolution to enable improved understanding of the function of the head and tail regions of the molecule and of the key intramolecular contacts that cause inhibition. Our results suggest an atomic model for the off state of myosin II, for its activation and unfolding by phosphorylation, and for understanding the clustering of disease-causing mutations near sites of intramolecular interaction.

View Publication Page
07/13/18 | Cryo-EM structure of the polycystin 2-l1 ion channel.
Hulse RE, Li Z, Huang RK, Zhang J, Clapham DE
eLife. 2018 Jul 13;7:. doi: 10.7554/eLife.36931

We report the near atomic resolution (3.3 Å) of the human polycystic kidney disease 2-like 1 (polycystin 2-l1) ion channel. Encoded by PKD2L1, polycystin 2-l1 is a calcium and monovalent cation-permeant ion channel in primary cilia and plasma membranes. The related primary cilium-specific polycystin-2 protein, encoded by PKD2, shares a high degree of sequence similarity, yet has distinct permeability characteristics. Here we show that these differences are reflected in the architecture of polycystin 2-l1.

View Publication Page
11/11/18 | Cryo-EM structure of the receptor-activated TRPC5 ion channel at 2.9 angstrom resolution.
Jingjing Duan , Jian Li , Gui-Lan Chen , Bo Zeng , Kechen Xie , Xiaogang Peng , Wei Zhou , Jianing Zhong , Yixing Zhang , Jie Xu , Changhu Xue , Lan Zhu , Wei Liu , Xiao-Li Tian , Jianbin Wang , David E. Clapham , Zongli Li , Jin Zhang

The transient receptor potential canonical subfamily member 5 (TRPC5) is a non-selective calcium-permeant cation channel. As a depolarizing channel, its function is studied in the central nervous system and kidney. TRPC5 forms heteromultimers with TRPC1, but also forms homomultimers. It can be activated by reducing agents through reduction of the extracellular disulfide bond. Here we present the 2.9 Å resolution electron cryo-microscopy (cryo-EM) structure of TRPC5. The structure of TRPC5 in its apo state is partially open, which may be related to the weak activation of TRPC5 in response to extracellular pH. We also report the conserved negatively charged residues of the cation binding site located in the hydrophilic pocket between S2 and S3. Comparison of the TRPC5 structure to previously determined structures of other TRPC and TRP channels reveals differences in the extracellular pore domain and in the length of the S3 helix. Together, these results shed light on the structural features that contribute to the specific activation mechanism of the receptor-activated TRPC5.

View Publication Page
03/03/21 | Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport.
Qiu B, Matthies D, Fortea E, Yu Z, Boudker O
Sciences Advances. 2021 Mar 03;7(10):. doi: 10.1126/sciadv.abf5814

Human excitatory amino acid transporter 3 (hEAAT3) mediates glutamate uptake in neurons, intestine, and kidney. Here, we report cryo-EM structures of hEAAT3 in several functional states where the transporter is empty, bound to coupled sodium ions only, or fully loaded with three sodium ions, a proton, and the substrate aspartate. The structures suggest that hEAAT3 operates by an elevator mechanism involving three functionally independent subunits. When the substrate-binding site is near the cytoplasm, it has a remarkably low affinity for the substrate, perhaps facilitating its release and allowing the rapid transport turnover. The mechanism of the coupled uptake of the sodium ions and the substrate is conserved across evolutionarily distant families and is augmented by coupling to protons in EAATs. The structures further suggest a mechanism by which a conserved glutamate residue mediates proton symport.

View Publication Page
05/01/22 | Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism.
Egri SB, Ouch C, Chou H, Yu Z, Song K, Xu C, Shen K
Molecular Cell. 2022 May 01;36(1):. doi: 10.1016/j.molcel.2022.03.002

mTORC1 controls cellular metabolic processes in response to nutrient availability. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which are localized on the lysosomal surface by the Ragulator complex. The Rag GTPases receive amino acid signals from multiple upstream regulators. One negative regulator, GATOR1, is a GTPase activating protein (GAP) for RagA. GATOR1 binds to the Rag GTPases via two modes: an inhibitory mode and a GAP mode. How these two binding interactions coordinate to process amino acid signals is unknown. Here, we resolved three cryo-EM structural models of the GATOR1-Rag-Ragulator complex, with the Rag-Ragulator subcomplex occupying the inhibitory site, the GAP site, and both binding sites simultaneously. When the Rag GTPases bind to GATOR1 at the GAP site, both Rag subunits contact GATOR1 to coordinate their nucleotide loading states. These results reveal a potential GAP mechanism of GATOR1 during the mTORC1 inactivation process.

View Publication Page
Grigorieff Lab
05/12/17 | CryoEM structure of an influenza virus receptor-binding site antibody-antigen interface.
Liu Y, Pan J, Jenni S, Raymond DD, Caradonna T, Do KT, Schmidt AG, Harrison SC, Grigorieff N
Journal of Molecular Biology. 2017 May 12;429(12):1829-39. doi: 10.1016/j.jmb.2017.05.011

Structure-based vaccine design depends on extensive structural analyses of antigen-antibody complexes. Single-particle electron cryomicroscopy (cryoEM) can circumvent some of the problems of x-ray crystallography as a pipeline for obtaining the required structures. We have examined the potential of single-particle cryoEM for determining the structure of influenza-virus hemagglutinin (HA):single-chain Fv (scFv) complexes, by studying a complex we failed to crystallize in pursuing an extended project of the human immune response to influenza vaccines. The result shows that a combination of cryoEM and molecular modeling can yield details of the antigen:antibody interface, although small variation in the twist of the rod-like HA trimer limited the overall resolution to about 4.5Å. Comparison of principal 3D classes suggests ways to modify the HA trimer to overcome this limitation. A closely related antibody from the same donor did yield crystals when bound with the same HA, giving us an independent validation of the cryoEM results The two structures also augment our understanding of receptor-binding site recognition by antibodies that neutralize a wide range of influenza-virus variants.

View Publication Page
05/13/21 | CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution.
Caveney NA, Workman SD, Yan R, Atkinson CE, Yu Z, Strynadka NC
Nature Communications. 2021 May 13;12(1):2775. doi: 10.1038/s41467-021-23063-6

The pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of β-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic. PBP1b, in its apo form, is seen to exhibit a distinct conformation in comparison to Moenomycin-bound crystal structures. The work herein paves the way for the use of cryoEM in structure-guided antibiotic development for this notoriously difficult to crystalize class of proteins and their complex substrates.

View Publication Page
Gonen Lab
05/12/13 | Crystal structure of a nitrate/nitrite exchanger.
Zheng H, Wisedchaisri G, Gonen T
Nature. 2013 May 12;497(7451):647-51. doi: 10.1038/nature12139

Mineral nitrogen in nature is often found in the form of nitrate (NO3(-)). Numerous microorganisms evolved to assimilate nitrate and use it as a major source of mineral nitrogen uptake. Nitrate, which is central in nitrogen metabolism, is first reduced to nitrite (NO2(-)) through a two-electron reduction reaction. The accumulation of cellular nitrite can be harmful because nitrite can be reduced to the cytotoxic nitric oxide. Instead, nitrite is rapidly removed from the cell by channels and transporters, or reduced to ammonium or dinitrogen through the action of assimilatory enzymes. Despite decades of effort no structure is currently available for any nitrate transport protein and the mechanism by which nitrate is transported remains largely unknown. Here we report the structure of a bacterial nitrate/nitrite transport protein, NarK, from Escherichia coli, with and without substrate. The structures reveal a positively charged substrate-translocation pathway lacking protonatable residues, suggesting that NarK functions as a nitrate/nitrite exchanger and that protons are unlikely to be co-transported. Conserved arginine residues comprise the substrate-binding pocket, which is formed by association of helices from the two halves of NarK. Key residues that are important for substrate recognition and transport are identified and related to extensive mutagenesis and functional studies. We propose that NarK exchanges nitrate for nitrite by a rocker switch mechanism facilitated by inter-domain hydrogen bond networks.

View Publication Page
Gonen Lab
06/01/18 | Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state.
Lei H, Ma J, Sanchez Martinez S, Gonen T
Nature Structural & Molecular Biology. 2018 Jun;25(6):522-527. doi: 10.1038/s41594-018-0072-2

Recent advances in understanding intracellular amino acid transport and mechanistic target of rapamycin complex 1 (mTORC1) signaling shed light on solute carrier 38, family A member 9 (SLC38A9), a lysosomal transporter responsible for the binding and translocation of several essential amino acids. Here we present the first crystal structure of SLC38A9 from Danio rerio in complex with arginine. As captured in the cytosol-open state, the bound arginine was locked in a transitional state stabilized by transmembrane helix 1 (TM1) of drSLC38A9, which was anchored at the groove between TM5 and TM7. These anchoring interactions were mediated by the highly conserved WNTMM motif in TM1, and mutations in this motif abolished arginine transport by drSLC38A9. The underlying mechanism of substrate binding is critical for sensitizing the mTORC1 signaling pathway to amino acids and for maintenance of lysosomal amino acid homeostasis. This study offers a first glimpse into a prototypical model for SLC38 transporters.

View Publication Page