Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2529 Janelia Publications

Showing 671-680 of 2529 results
Looger LabSchreiter Lab
03/06/09 | Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design.
Akerboom J, Rivera JD, Guilbe MM, Malavé EC, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER
The Journal of Biological Chemistry. 2009 Mar 6;284:6455-64. doi: 10.1074/jbc.M807657200

The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca2+-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.

View Publication Page
Looger LabSchreiter Lab
07/01/08 | Crystallization and preliminary x-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2.
Rodríguez Guilbe MM, Alfaro Malavé EC, Akerboom J, Marvin JS, Looger LL, Schreiter ER
Acta Crystallographica. Section F, Structural Biology and Crystallization Communications. 2008 Jul 1;64:629-31. doi: 10.1107/S1744309108016059

Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 A resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1.

View Publication Page
02/22/24 | CSPP1 stabilizes microtubules by capping both plus and minus ends.
Wang Z, Wang W, Liu S, Yang F, Liu X, Hua S, Zhu L, Xu A, Hill DL, Wang D, Jiang K, Lippincott-Schwartz J, Liu X, Yao X
Journal of Molecular Cell Biology. 2024 Feb 22:. doi: 10.1093/jmcb/mjae007

Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting the polymerization. Importantly, CSPP1-bound MTs were resistant to MCAK-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.

View Publication Page
Grigorieff Lab
08/13/15 | CTFFIND4: Fast and accurate defocus estimation from electron micrographs.
Rohou A, Grigorieff N
Journal of Structural Biology. 2015 Aug 13;192(2):216-21. doi: 10.1016/j.jsb.2015.08.008

CTFFIND is a widely-used program for the estimation of objective lens defocus parameters from transmission electron micrographs. Defocus parameters are estimated by fitting a model of the microscope's contrast transfer function (CTF) to an image's amplitude spectrum. Here we describe modifications to the algorithm which make it significantly faster and more suitable for use with images collected using modern technologies such as dose fractionation and phase plates. We show that this new version preserves the accuracy of the original algorithm while allowing for higher throughput. We also describe a measure of the quality of the fit as a function of spatial frequency and suggest this can be used to define the highest resolution at which CTF oscillations were successfully modeled.

View Publication Page
03/15/12 | Cutting edge: the role of IFN-α receptor and MyD88 signaling in induction of IL-15 expression in vivo.
Colpitts SL, Stoklasek TA, Plumlee CR, Obar JJ, Guo C, Lefran\c cois L
Journal of Immunology. 2012 Mar 15;188(6):2483-7. doi: 10.4049/jimmunol.1103609

IL-15 plays a multifaceted role in immune homeostasis, but the unreliability of IL-15 detection has stymied exploration of IL-15 regulation in vivo. To visualize IL-15 expression, we created a transgenic mouse expressing emerald-GFP (EmGFP) under IL-15 promoter control. EmGFP/IL-15 was prevalent in innate cells including dendritic cells (DCs), macrophages, and monocytes. However, DC subsets expressed varying levels of EmGFP/IL-15 with CD8(+) DCs constitutively expressing EmGFP/IL-15 and CD8(-) DCs expressing low EmGFP/IL-15 levels. Virus infection resulted in IL-15 upregulation in both subsets. By crossing the transgenic mice to mice deficient in specific elements of innate signaling, we found a cell-intrinsic dependency of DCs and Ly6C(+) monocytes on IFN-α receptor expression for EmGFP/IL-15 upregulation after vesicular stomatitis virus infection. In contrast, myeloid cells did not require the expression of MyD88 to upregulate EmGFP/IL-15 expression. These findings provide evidence of previously unappreciated regulation of IL-15 expression in myeloid lineages during homeostasis and following infection.

View Publication Page
01/02/24 | Cutting through stress.
Jasper LA, Wang MC
Nature Metabolism. 2024 Jan 02:. doi: 10.1038/s42255-023-00946-0
06/21/17 | Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation.
Fritzsche M, Fernandes RA, Chang VT, Colin-York H, Clausen MP, Felce JH, Galiani S, Erlenkämper C, Santos AM, Heddleston JM, Pedroza-Pacheco I, Waithe D, de la Serna JB, Lagerholm BC, Liu T, Chew T, Betzig E, Davis SJ, Eggeling C
Science Advances. 2017 Jun 21;3(6):e1603032. doi: 10.1126/sciadv.1603032

T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions.

View Publication Page
03/07/19 | Cytoskeletal actin patterns shape mast cell activation.
Colin-York H, Li D, Korobchevskaya K, Chang VT, Betzig E, Eggeling C, Fritzsche M
Communications Biology. 2019;2:93. doi: 10.1038/s42003-019-0322-9

Activation of immune cells relies on a dynamic actin cytoskeleton. Despite detailed knowledge of molecular actin assembly, the exact processes governing actin organization during activation remain elusive. Using advanced microscopy, we here show that Rat Basophilic Leukemia (RBL) cells, a model mast cell line, employ an orchestrated series of reorganization events within the cortical actin network during activation. In response to IgE antigen-stimulation of FCε receptors (FCεR) at the RBL cell surface, we observed symmetry breaking of the F-actin network and subsequent rapid disassembly of the actin cortex. This was followed by a reassembly process that may be driven by the coordinated transformation of distinct nanoscale F-actin architectures, reminiscent of self-organizing actin patterns. Actin patterns co-localized with zones of Arp2/3 nucleation, while network reassembly was accompanied by myosin-II activity. Strikingly, cortical actin disassembly coincided with zones of granule secretion, suggesting that cytoskeletal actin patterns contribute to orchestrate RBL cell activation.

View Publication Page
03/19/19 | Cytoskeletal control of antigen-dependent T cell activation.
Colin-York H, Javanmardi Y, Skamrahl M, Kumari S, Chang VT, Khuon S, Taylor A, Chew T, Betzig E, Moeendarbary E, Cerundolo V, Eggeling C, Fritzsche M
Cell Reports. 2019 Mar 19;26(12):3369-3379.e5. doi: 10.1016/j.celrep.2019.02.074

Cytoskeletal actin dynamics is essential for T cell activation. Here, we show evidence that the binding kinetics of the antigen engaging the T cell receptor influences the nanoscale actin organization and mechanics of the immune synapse. Using an engineered T cell system expressing a specific T cell receptor and stimulated by a range of antigens, we found that the peak force experienced by the T cell receptor during activation was independent of the unbinding kinetics of the stimulating antigen. Conversely, quantification of the actin retrograde flow velocity at the synapse revealed a striking dependence on the antigen unbinding kinetics. These findings suggest that the dynamics of the actin cytoskeleton actively adjusted to normalize the force experienced by the T cell receptor in an antigen-specific manner. Consequently, tuning actin dynamics in response to antigen kinetics may thus be a mechanism that allows T cells to adjust the lengthscale and timescale of T cell receptor signaling.

View Publication Page
08/05/24 | DaCapo: a modular deep learning framework for scalable 3D image segmentation
Patton W, Rhoades JL, Zouinkhi M, Ackerman DG, Malin-Mayor C, Adjavon D, Heinrich L, Bennett D, Zubov Y, Team CP, Weigel A, Funke J
arXiv. 2024 Aug 05:. doi: 10.48550/arXiv.2408.02834

DaCapo is a specialized deep learning library tailored to expedite the training and application of existing machine learning approaches on large, near-isotropic image data. In this correspondence, we introduce DaCapo's unique features optimized for this specific domain, highlighting its modular structure, efficient experiment management tools, and scalable deployment capabilities. We discuss its potential to improve access to large-scale, isotropic image segmentation and invite the community to explore and contribute to this open-source initiative.

View Publication Page