Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2685 Janelia Publications

Showing 681-690 of 2685 results
Fitzgerald Lab
03/24/20 | Correcting for physical distortions in visual stimuli improves reproducibility in zebrafish neuroscience.
Dunn TW, Fitzgerald JE
eLife. 2020 Mar 24;9:. doi: 10.7554/eLife.53684

Breakthrough technologies for monitoring and manipulating single-neuron activity provide unprecedented opportunities for whole-brain neuroscience in larval zebrafish1–9. Understanding the neural mechanisms of visually guided behavior also requires precise stimulus control, but little prior research has accounted for physical distortions that result from refraction and reflection at an air-water interface that usually separates the projected stimulus from the fish10–12. Here we provide a computational tool that transforms between projected and received stimuli in order to detect and control these distortions. The tool considers the most commonly encountered interface geometry, and we show that this and other common configurations produce stereotyped distortions. By correcting these distortions, we reduced discrepancies in the literature concerning stimuli that evoke escape behavior13,14, and we expect this tool will help reconcile other confusing aspects of the literature. This tool also aids experimental design, and we illustrate the dangers that uncorrected stimuli pose to receptive field mapping experiments.

View Publication Page
10/05/18 | Correlated evolution of two copulatory organs via a single cis-regulatory nucleotide change.
Nagy O, Nuez I, Savisaar R, Peluffo AE, Yassin A, Lang M, Stern DL, Matute DR, David JR, Courtier-Orgogozo V
Current Biology : CB. 2018 Oct 05;28(21):3450-7. doi: 10.1016/j.cub.2018.08.047

Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.

View Publication Page
04/17/12 | Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes.
Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF
Proceedings of the National Academy of Science of the United States of America. 2012 Apr 17;109(16):6136-41. doi: 10.1073/pnas.1121558109

Microscopic images of specific proteins in their cellular context yield important insights into biological processes and cellular architecture. The advent of superresolution optical microscopy techniques provides the possibility to augment EM with nanometer-resolution fluorescence microscopy to access the precise location of proteins in the context of cellular ultrastructure. Unfortunately, efforts to combine superresolution fluorescence and EM have been stymied by the divergent and incompatible sample preparation protocols of the two methods. Here, we describe a protocol that preserves both the delicate photoactivatable fluorescent protein labels essential for superresolution microscopy and the fine ultrastructural context of EM. This preparation enables direct 3D imaging in 500- to 750-nm sections with interferometric photoactivatable localization microscopy followed by scanning EM images generated by focused ion beam ablation. We use this process to "colorize" detailed EM images of the mitochondrion with the position of labeled proteins. The approach presented here has provided a new level of definition of the in vivo nature of organization of mitochondrial nucleoids, and we expect this straightforward method to be applicable to many other biological questions that can be answered by direct imaging.

View Publication Page
10/25/13 | Correlative photoactivated localization and scanning electron microscopy.
Kopek BG, Shtengel G, Grimm JB, Clayton DA, Hess HF
PLoS One. 2013 Oct 25;8(10):e77209. doi: 10.1371/journal.pone.0077209

The ability to localize proteins precisely within subcellular space is crucial to understanding the functioning of biological systems. Recently, we described a protocol that correlates a precise map of fluorescent fusion proteins localized using three-dimensional super-resolution optical microscopy with the fine ultrastructural context of three-dimensional electron micrographs. While it achieved the difficult simultaneous objectives of high photoactivated fluorophore preservation and ultrastructure preservation, it required a super-resolution optical and specialized electron microscope that is not available to many researchers. We present here a faster and more practical protocol with the advantage of a simpler two-dimensional optical (Photoactivated Localization Microscopy (PALM)) and scanning electron microscope (SEM) system that retains the often mutually exclusive attributes of fluorophore preservation and ultrastructure preservation. As before, cryosections were prepared using the Tokuyasu protocol, but the staining protocol was modified to be amenable for use in a standard SEM without the need for focused ion beam ablation. We show the versatility of this technique by labeling different cellular compartments and structures including mitochondrial nucleoids, peroxisomes, and the nuclear lamina. We also demonstrate simultaneous two-color PALM imaging with correlated electron micrographs. Lastly, this technique can be used with small-molecule dyes as demonstrated with actin labeling using phalloidin conjugated to a caged dye. By retaining the dense protein labeling expected for super-resolution microscopy combined with ultrastructural preservation, simplifying the tools required for correlative microscopy, and expanding the number of useful labels we expect this method to be accessible and valuable to a wide variety of researchers.

View Publication Page
05/16/24 | Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment.
Daugird TA, Shi Y, Holland KL, Rostamian H, Liu Z, Lavis LD, Rodriguez J, Strahl BD, Legant WR
Nat. Commun.. 2024 May 16:. doi: 10.1038/s41467-024-48562-0

In the nucleus, biological processes are driven by proteins that diffuse through and bind to a meshwork of nucleic acid polymers. To better understand this interplay, we present an imaging platform to simultaneously visualize single protein dynamics together with the local chromatin environment in live cells. Together with super-resolution imaging, new fluorescent probes, and biophysical modeling, we demonstrate that nucleosomes display differential diffusion and packing arrangements as chromatin density increases whereas the viscoelastic properties and accessibility of the interchromatin space remain constant. Perturbing nuclear functions impacts nucleosome diffusive properties in a manner that is dependent both on local chromatin density and on relative location within the nucleus. Our results support a model wherein transcription locally stabilizes nucleosomes while simultaneously allowing for the free exchange of nuclear proteins. Additionally, they reveal that nuclear heterogeneity arises from both active and passive processes and highlight the need to account for different organizational principles when modeling different chromatin environments.

View Publication Page
01/26/14 | Correlative super-resolution fluorescence and metal-replica transmission electron microscopy.
Sochacki KA, Shtengel G, Van Engelenburg SB, Hess HF, Taraska JW
Nature Methods. 2014 Jan 26;11(3):305-8. doi: 10.1038/nmeth.2816

We combine super-resolution localization fluorescence microscopy with transmission electron microscopy of metal replicas to locate proteins on the landscape of the cellular plasma membrane at the nanoscale. We validate robust correlation on the scale of 20 nm by imaging endogenous clathrin (in two and three dimensions) and apply the method to find the previously unknown three-dimensional position of the endocytic protein epsin on clathrin-coated structures at the plasma membrane.

View Publication Page
01/17/20 | Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells.
Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang C, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF
Science. 2020 Jan 17;367(6475):. doi: 10.1126/science.aaz5357

Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam-milled block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while enabling independent SR and EM workflow optimization. We discovered unexpected protein-ultrastructure relationships in mammalian cells including intranuclear vesicles containing endoplasmic reticulum-associated proteins, web-like adhesions between cultured neurons, and chromatin domains subclassified on the basis of transcriptional activity. Our findings illustrate the value of a comprehensive multimodal view of ultrastructural variability across whole cells.

View Publication Page
12/03/15 | Cortex commands the performance of skilled movement.
Guo J, Graves AR, Guo WW, Zheng J, Lee A, Rodríguez-González J, Li N, Macklin JJ, Phillips JW, Mensh BD, Branson K, Hantman AW
eLife. 2015 Dec 3;4:. doi: 10.7554/eLife.10774

Mammalian cerebral cortex is accepted as being critical for voluntary motor control, but what functions depend on cortex is still unclear. Here we used rapid, reversible optogenetic inhibition to test the role of cortex during a head-fixed task in which mice reach, grab, and eat a food pellet. Sudden cortical inhibition blocked initiation or froze execution of this skilled prehension behavior, but left untrained forelimb movements unaffected. Unexpectedly, kinematically normal prehension occurred immediately after cortical inhibition even during rest periods lacking cue and pellet. This 'rebound' prehension was only evoked in trained and food-deprived animals, suggesting that a motivation-gated motor engram sufficient to evoke prehension is activated at inhibition's end. These results demonstrate the necessity and sufficiency of cortical activity for enacting a learned skill.

View Publication Page
01/18/19 | Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution.
Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE, Liu T, Singh V, Graves AR, Huynh GH, Zhao Y, Bogovic JA, Colonell J, Ott CM, Zugates CT, Tappan S, Rodriguez A, Mosaliganti KR, Sheu S, Pasolli HA, et al
Science (New York, N.Y.). 2019 Jan 18;363(6424):eaau8302. doi: 10.1126/science.aau8302

Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.

View Publication Page
02/13/25 | Cortical control of innate behavior from subcortical demonstration
Keller JA, Kwak IS, Stark AK, Pachitariu M, Branson K, Dudman JT
bioRxiv. 2025 Feb 13:. doi: 10.1101/2025.02.12.637930

Motor control in mammals is traditionally viewed as a hierarchy of descending spinal-targeting pathways, with frontal cortex at the top 1–3. Many redundant muscle patterns can solve a given task, and this high dimensionality allows flexibility but poses a problem for efficient learning 4. Although a feasible solution invokes subcortical innate motor patterns, or primitives, to reduce the dimensionality of the control problem, how cortex learns to utilize such primitives remains an open question 5–7. To address this, we studied cortical and subcortical interactions as head-fixed mice learned contextual control of innate hindlimb extension behavior. Naïve mice performed reactive extensions to turn off a cold air stimulus within seconds and, using predictive cues, learned to avoid the stimulus altogether in tens of trials. Optogenetic inhibition of large areas of rostral cortex completely prevented avoidance behavior, but did not impair hindlimb extensions in reaction to the cold air stimulus. Remarkably, mice covertly learned to avoid the cold stimulus even without any prior experience of successful, cortically-mediated avoidance. These findings support a dynamic, heterarchical model in which the dominant locus of control can change, on the order of seconds, between cortical and subcortical brain areas. We propose that cortex can leverage periods when subcortex predominates as demonstrations, to learn parameterized control of innate behavioral primitives.

View Publication Page