Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2755 Janelia Publications

Showing 861-870 of 2755 results
01/13/15 | Distinct dopamine neurons mediate reward signals for short- and long-term memories.
Yamagata N, Ichinose T, Aso Y, Placais P, Friedrich AB, Sima RJ, Preat T, Rubin GM, Tanimoto H
Proceedings of the National Academy of Sciences of the United States of America. 2015 Jan 13;112(2):578-83. doi: 10.1073/pnas.1421930112

Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons.

View Publication Page
11/01/21 | Distinct genetic architectures underlie divergent thorax, leg, and wing pigmentation between Drosophila elegans and D. gunungcola.
Massey JH, Li J, Stern DL, Wittkopp PJ
Heredity. 2021 Nov 01;127(5):467-74. doi: 10.1038/s41437-021-00467-0

Pigmentation divergence between Drosophila species has emerged as a model trait for studying the genetic basis of phenotypic evolution, with genetic changes contributing to pigmentation differences often mapping to genes in the pigment synthesis pathway and their regulators. These studies of Drosophila pigmentation have tended to focus on pigmentation changes in one body part for a particular pair of species, but changes in pigmentation are often observed in multiple body parts between the same pair of species. The similarities and differences of genetic changes responsible for divergent pigmentation in different body parts of the same species thus remain largely unknown. Here we compare the genetic basis of pigmentation divergence between Drosophila elegans and D. gunungcola in the wing, legs, and thorax. Prior work has shown that regions of the genome containing the pigmentation genes yellow and ebony influence the size of divergent male-specific wing spots between these two species. We find that these same two regions of the genome underlie differences in leg and thorax pigmentation; however, divergent alleles in these regions show differences in allelic dominance and epistasis among the three body parts. These complex patterns of inheritance can be explained by a model of evolution involving tissue-specific changes in the expression of Yellow and Ebony between D. elegans and D. gunungcola.

View Publication Page
06/02/24 | Distinct mobility patterns of BRCA2 molecules at DNA damage sites
Maarten W. Paul , Jesse Aaron , Eric Wait , Romano M. van Genderen , Ihor Smal , Teng-Leong Chew , Roland Kanaar , Claire Wyman
Nucleic Acids Res.. 2024 Jul 02:gkae559. doi: 10.1093/nar/gkae559

BRCA2 is an essential tumor suppressor protein involved in promoting faithful repair of DNA lesions. The activity of BRCA2 needs to be tuned precisely to be active when and where it is needed. Here, we quantified the spatio-temporal dynamics of BRCA2 in living cells using aberration-corrected multifocal microscopy (acMFM). Using multicolor imaging to identify DNA damage sites, we were able to quantify its dynamic motion patterns in the nucleus and at DNA damage sites. While a large fraction of BRCA2 molecules localized near DNA damage sites appear immobile, an additional fraction of molecules exhibits subdiffusive motion, providing a potential mechanism to retain an increased number of molecules at DNA lesions. Super-resolution microscopy revealed inhomogeneous localization of BRCA2 relative to other DNA repair factors at sites of DNA damage. This suggests the presence of multiple nanoscale compartments in the chromatin surrounding the DNA lesion, which could play an important role in the contribution of BRCA2 to the regulation of the repair process.

View Publication Page
Menon Lab
12/15/09 | Distinct pose of discodermolide in taxol binding pocket drives a complementary mode of microtubule stabilization.
Khrapunovich-Baine M, Menon V, Verdier-Pinard P, Smith AB, Angeletti RH, Fiser A, Horwitz SB, Xiao H
Biochemistry. 2009 Dec 15;48(49):11664-77. doi: 10.1021/bi901351q

The microtubule cytoskeleton has proven to be an effective target for cancer therapeutics. One class of drugs, known as microtubule stabilizing agents (MSAs), binds to microtubule polymers and stabilizes them against depolymerization. The prototype of this group of drugs, Taxol, is an effective chemotherapeutic agent used extensively in the treatment of human ovarian, breast, and lung carcinomas. Although electron crystallography and photoaffinity labeling experiments determined that the binding site for Taxol is in a hydrophobic pocket in beta-tubulin, little was known about the effects of this drug on the conformation of the entire microtubule. A recent study from our laboratory utilizing hydrogen-deuterium exchange (HDX) in concert with various mass spectrometry (MS) techniques has provided new information on the structure of microtubules upon Taxol binding. In the current study we apply this technique to determine the binding mode and the conformational effects on chicken erythrocyte tubulin (CET) of another MSA, discodermolide, whose synthetic analogues may have potential use in the clinic. We confirmed that, like Taxol, discodermolide binds to the taxane binding pocket in beta-tubulin. However, as opposed to Taxol, which has major interactions with the M-loop, discodermolide orients itself away from this loop and toward the N-terminal H1-S2 loop. Additionally, discodermolide stabilizes microtubules mainly via its effects on interdimer contacts, specifically on the alpha-tubulin side, and to a lesser extent on interprotofilament contacts between adjacent beta-tubulin subunits. Also, our results indicate complementary stabilizing effects of Taxol and discodermolide on the microtubules, which may explain the synergy observed between the two drugs in vivo.

View Publication Page
Murphy Lab
10/01/14 | Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus.
Gale SD, Murphy GJ
The Journal of Neuroscience. 2014 Oct 1;34(40):13458-71. doi: 10.1523/JNEUROSCI.2768-14.2014

The superficial superior colliculus (sSC) occupies a critical node in the mammalian visual system; it is one of two major retinorecipient areas, receives visual cortical input, and innervates visual thalamocortical circuits. Nonetheless, the contribution of sSC neurons to downstream neural activity and visually guided behavior is unknown and frequently neglected. Here we identified the visual stimuli to which specific classes of sSC neurons respond, the downstream regions they target, and transgenic mice enabling class-specific manipulations. One class responds to small, slowly moving stimuli and projects exclusively to lateral posterior thalamus; another, comprising GABAergic neurons, responds to the sudden appearance or rapid movement of large stimuli and projects to multiple areas, including the lateral geniculate nucleus. A third class exhibits direction-selective responses and targets deeper SC layers. Together, our results show how specific sSC neurons represent and distribute diverse information and enable direct tests of their functional role.

View Publication Page
12/09/24 | Distinct roles of ascorbic acid in extracellular vesicles and free form: Implications for metabolism and oxidative stress in presymptomatic Huntington's disease.
Beltrán FA, Torres-Díaz L L, Troncoso-Escudero P, Villalobos-González J, Mayorga-Weber G, Lara M, Covarrubias-Pinto A, Valdivia S, Vicencio I, Papic E, Paredes-Martínez C, Silva-Januàrio ME, Rojas A, daSilva LL, Court F, Rosas-Arellano A, Bátiz LF, Rojas P, Rivera FJ, Castro MA
Free Radic Biol Med. 2024 Dec 09;227:521-535. doi: 10.1016/j.freeradbiomed.2024.12.001

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin gene. The huntingtin protein (Htt) is ubiquitously expressed and localized in several organelles, including endosomes, where it plays an essential role in intracellular trafficking. Presymptomatic HD is associated with a failure in energy metabolism and oxidative stress. Ascorbic acid is a potent antioxidant that plays a key role in modulating neuronal metabolism and is highly concentrated in the brain. During synaptic activity, neurons take up ascorbic acid released by glial cells; however, this process is disrupted in HD. In this study, we aim to elucidate the molecular and cellular mechanisms underlying this dysfunction. Using an electrophysiological approach in presymptomatic YAC128 HD slices, we observed decreased ascorbic acid flux from astrocytes to neurons, which altered neuronal metabolic substrate preferences. Ascorbic acid efflux and recycling were also decreased in cultured astrocytes from YAC128 HD mice. We confirmed our findings using GFAP-HD160Q, an HD mice model expressing mutant N-terminal Htt mainly in astrocytes. For the first time, we demonstrated that ascorbic acid is released from astrocytes via extracellular vesicles (EVs). Decreased number of particles and exosomal markers were observed in EV fractions from cultured YAC128 HD astrocytes and Htt-KD cells. We observed reduced number of multivesicular bodies (MVBs) in YAC128 HD striatum via electron microscopy, suggesting mutant Htt alters MVB biogenesis. EVs containing ascorbic acid effectively reduced reactive oxygen species, whereas "free" ascorbic acid played a role in modulating neuronal metabolic substrate preferences. These findings suggest that the early redox imbalance observed in HD arises from a reduced release of ascorbic acid-containing EVs by astrocytes. Meanwhile, a decrease in "free" ascorbic acid likely contributes to presymptomatic metabolic impairment.

View Publication Page
05/02/16 | Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin.
Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong G, Gross KW, Haase VH
The Journal of Clinical Investigation. 2016 May 02;126(5):1926-38. doi: 10.1172/JCI83551

Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.

View Publication Page
10/29/14 | Distinct substrate selectivity of a metabolic hydrolase from Mycobacterium tuberculosis.
Lukowski JK, Savas CP, Gehring AM, McKary MG, Adkins CT, Lavis LD, Hoops GC, Johnson RJ
Biochemistry. 2014 Oct 29;53(47):7386-95. doi: 10.1021/bi501108u

The transition between dormant and active Mycobacterium tuberculosis infection requires reorganization of its lipid metabolism and activation of a battery of serine hydrolase enzymes. Among these serine hydrolases, Rv0045c is a mycobacterial-specific serine hydrolase with limited sequence homology outside mycobacteria but structural homology to divergent bacterial hydrolase families. Herein, we determined the global substrate specificity of Rv0045c against a library of fluorogenic hydrolase substrates, constructed a combined experimental and computational model for its binding pocket, and performed comprehensive substitutional analysis to develop a structural map of its binding pocket. Rv0045c showed strong substrate selectivity toward short, straight chain alkyl esters with the highest activity toward four atom chains. This strong substrate preference was maintained through the combined action of residues in a flexible loop connecting the cap and α/β hydrolase domains and in residues close to the catalytic triad. Two residues bracketing the substrate-binding pocket (Gly90 and His187) were essential to maintaining the narrow substrate selectivity of Rv0045c toward various acyl ester substituents, as independent conversion of these residues significantly increased its catalytic activity and broadened its substrate specificity. Focused saturation mutagenesis of position 187 implicated this residue, as the differentiation point between the substrate specificity of Rv0045c and the structurally homologous ybfF hydrolase family. Insertion of the analogous tyrosine residue from ybfF hydrolases into Rv0045c increased the catalytic activity of Rv0045 by over 20-fold toward diverse ester substrates. The unique binding pocket structure and selectivity of Rv0045c provide molecular indications of its biological role and evidence for expanded substrate diversity in serine hydrolases from M. tuberculosis.

View Publication Page
06/27/14 | Distinguishing seemingly indistinguishable animals with computer vision.
Branson K
Nature Methods. 2014 Jun 27;11(7):721-2. doi: 10.1038/nmeth.3004

A general method to recognize and track unmarked animals within a population will enable new studies of social behavior and individuality.

View Publication Page
08/02/25 | Distributed control circuits across a brain-and-cord connectome
Bates AS, Phelps JS, Kim M, Yang HH, Matsliah A, Ajabi Z, Perlman E, Delgado KM, Osman MA, Salmon CK, Gager J, Silverman B, Renauld S, Collie MF, Fan J, Pacheco DA, Zhao Y, Patel J, Zhang W, Serratosa Capdevilla L, Roberts RJ, Munnelly EJ, Griggs N, Langley H, Moya-Llamas B, Maloney RT, Yu S, Sterling AR, Sorek M, Kruk K, Serafetinidis N, Dhawan S, Stürner T, Klemm F, Brooks P, Lesser E, Jones JM, Pierce-Lundgren SE, Lee S, Luo Y, Cook AP, McKim TH, Kophs EC, Falt T, Negrón Morales AM, Burke A, Hebditch J, Willie KP, Willie R, Popovych S, Kemnitz N, Ih D, Lee K, Lu R, Halageri A, Bae JA, Jourdan B, Schwartzman G, Demarest DD, Behnke E, Bland D, Kristiansen A, Skelton J, Stocks T, Garner D, Salman F, Daly KC, Hernandez A, Kumar S, The BANC-FlyWire Consortium , Dorkenwald S, Collman F, Suver MP, Fenk LM, Pankratz MJ, Jefferis GS, Eichler K, Seeds AM, Hampel S, Agrawal S, Zandawala M, Macrina T, Adjavon D, Funke J, Tuthill JC, Azevedo A, Seung HS, de Bivort BL, Murthy M, Drugowitsch J, Wilson RI, Lee WA
bioRxiv. 2025 Aug 02:. doi: 10.1101/2025.07.31.667571

Just as genomes revolutionized molecular genetics, connectomes (maps of neurons and synapses) are transforming neuroscience. To date, the only species with complete connectomes are worms and sea squirts (103-104 synapses). By contrast, the fruit fly is more complex (108 synaptic connections), with a brain that supports learning and spatial memory and an intricate ventral nerve cord analogous to the vertebrate spinal cord. Here we report the first adult fly connectome that unites the brain and ventral nerve cord, and we leverage this resource to investigate principles of neural control. We show that effector cells (motor neurons, endocrine cells and efferent neurons targeting the viscera) are primarily influenced by local sensory cells in the same body part, forming local feedback loops. These local loops are linked by long-range circuits involving ascending and descending neurons organized into behavior-centric modules. Single ascending and descending neurons are often positioned to influence the voluntary movements of multiple body parts, together with endocrine cells or visceral organs that support those movements. Brain regions involved in learning and navigation supervise these circuits. These results reveal an architecture that is distributed, parallelized and embodied (tightly connected to effectors), reminiscent of distributed control architectures in engineered systems.

View Publication Page