Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2689 Janelia Publications

Showing 881-890 of 2689 results
02/05/19 | DVID: Distributed versioned image-oriented dataservice.
Katz WT, Plaza SM
Frontiers in Neural Circuits. 2019 Feb 05;13(5):. doi: 10.3389/fncir.2019.00005

Open-source software development has skyrocketed in part due to community tools like github.com, which allows publication of code as well as the ability to create branches and push accepted modifications back to the original repository. As the number and size of EM-based datasets increases, the connectomics community faces similar issues when we publish snapshot data corresponding to a publication. Ideally, there would be a mechanism where remote collaborators could modify branches of the data and then flexibly reintegrate results via moderated acceptance of changes. The DVID system provides a web-based connectomics API and the first steps toward such a distributed versioning approach to EM-based connectomics datasets. Through its use as the central data resource for Janelia's FlyEM team, we have integrated the concepts of distributed versioning into reconstruction workflows, allowing support for proofreader training and segmentation experiments through branched, versioned data. DVID also supports persistence to a variety of storage systems from high-speed local SSDs to cloud-based object stores, which allows its deployment on laptops as well as large servers. The tailoring of the backend storage to each type of connectomics data leads to efficient storage and fast queries. DVID is freely available as open-source software with an increasing number of supported storage options.

View Publication Page
03/18/24 | Dynamic 1D Search and Processive Nucleosome Translocations by RSC and ISW2 Chromatin Remodelers
Jee Min Kim , Claudia C. Carcamo , Sina Jazani , Zepei Xie , Xinyu A. Feng , Matthew Poyton , Katie L. Holland , Jonathan B. Grimm , Luke D. Lavis , Taekjip Ha , Carl Wu
eLife. 2024 Mar 18:. doi: 10.7554/eLife.91433

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.

View Publication Page
06/02/24 | Dynamic assemblies of parvalbumin interneurons in brain oscillations.
Huang Y, Chen H, Lin Y, Lin S, Zheng Q, Abdelfattah AS, Lavis LD, Schreiter ER, Lin B, Chen T
Neuron. 2024 Jun 02:. doi: 10.1016/j.neuron.2024.05.015

Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.

View Publication Page
Menon Lab
10/11/13 | Dynamic Bayesian clustering.
Fowler A, Menon V, Heard NA
Journal of bioinformatics and computational biology. 2013 Oct;11(5):1342001. doi: 10.1142/S0219720013420018

Clusters of time series data may change location and memberships over time; in gene expression data, this occurs as groups of genes or samples respond differently to stimuli or experimental conditions at different times. In order to uncover this underlying temporal structure, we consider dynamic clusters with time-dependent parameters which split and merge over time, enabling cluster memberships to change. These interesting time-dependent structures are useful in understanding the development of organisms or complex organs, and could not be identified using traditional clustering methods. In cell cycle data, these time-dependent structure may provide links between genes and stages of the cell cycle, whilst in developmental data sets they may highlight key developmental transitions.

View Publication Page
Svoboda Lab
03/27/18 | Dynamic cues for whisker-based object localization: An analytical solution to vibration during active whisker touch.
Vaxenburg R, Wyche I, Svoboda K, Efros AL, Hires SA
PLoS Computational Biology. 2018 Mar 27;14(3):e1006032. doi: 10.1371/journal.pcbi.1006032

Vibrations are important cues for tactile perception across species. Whisker-based sensation in mice is a powerful model system for investigating mechanisms of tactile perception. However, the role vibration plays in whisker-based sensation remains unsettled, in part due to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach to calculate the vibrations of whiskers striking objects. We use this approach to quantify vibration forces during active whisker touch at a range of locations along the whisker. The frequency and amplitude of vibrations evoked by contact are strongly dependent on the position of contact along the whisker. The magnitude of vibrational shear force and bending moment is comparable to quasi-static forces. The fundamental vibration frequencies are in a detectable range for mechanoreceptor properties and below the maximum spike rates of primary sensory afferents. These results suggest two dynamic cues exist that rodents can use for object localization: vibration frequency and comparison of vibrational to quasi-static force magnitude. These complement the use of quasi-static force angle as a distance cue, particularly for touches close to the follicle, where whiskers are stiff and force angles hardly change during touch. Our approach also provides a general solution to calculation of whisker vibrations in other sensing tasks.

View Publication Page
04/26/19 | Dynamic super-resolution structured illumination imaging in the living brain.
Turcotte R, Liang Y, Tanimoto M, Zhang Q, Li Z, Koyama M, Betzig E, Ji N
Proceedings of the National Academy of Sciences of the United States of America. 2019 Apr 26;116(19):9586-91. doi: 10.1073/pnas.1819965116

Cells in the brain act as components of extended networks. Therefore, to understand neurobiological processes in a physiological context, it is essential to study them in vivo. Super-resolution microscopy has spatial resolution beyond the diffraction limit, thus promising to provide structural and functional insights that are not accessible with conventional microscopy. However, to apply it to in vivo brain imaging, we must address the challenges of 3D imaging in an optically heterogeneous tissue that is constantly in motion. We optimized image acquisition and reconstruction to combat sample motion and applied adaptive optics to correcting sample-induced optical aberrations in super-resolution structured illumination microscopy (SIM) in vivo. We imaged the brains of live zebrafish larvae and mice and observed the dynamics of dendrites and dendritic spines at nanoscale resolution.

View Publication Page
06/16/15 | Dynamical feature extraction at the sensory periphery guides chemotaxis.
Schulze A, Gomez-Marin A, Rajendran VG, Lott G, Musy M, Ahammad P, Deogade A, Sharpe J, Riedl J, Jarriault D, Trautman ET, Werner C, Venkadesan M, Druckmann S, Jayaraman V, Louis M
eLife. 2015 Jun 16;4:. doi: 10.7554/eLife.06694

Behavioral strategies employed for chemotaxis have been described across phyla, but the sensorimotor basis of this phenomenon has seldom been studied in naturalistic contexts. Here, we examine how signals experienced during free olfactory behaviors are processed by first-order olfactory sensory neurons (OSNs) of the Drosophila larva. We find that OSNs can act as differentiators that transiently normalize stimulus intensity-a property potentially derived from a combination of integral feedback and feed-forward regulation of olfactory transduction. In olfactory virtual reality experiments, we report that high activity levels of the OSN suppress turning, whereas low activity levels facilitate turning. Using a generalized linear model, we explain how peripheral encoding of olfactory stimuli modulates the probability of switching from a run to a turn. Our work clarifies the link between computations carried out at the sensory periphery and action selection underlying navigation in odor gradients.

View Publication Page
08/09/23 | Dynamics of cortical contrast adaptation predict perception of signals in noise.
Angeloni CF, Młynarski W, Piasini E, Williams AM, Wood KC, Garami L, Hermundstad AM, Geffen MN
Nature Communications. 2023 Aug 09;14(1):4817. doi: 10.1038/s41467-023-40477-6

Neurons throughout the sensory pathway adapt their responses depending on the statistical structure of the sensory environment. Contrast gain control is a form of adaptation in the auditory cortex, but it is unclear whether the dynamics of gain control reflect efficient adaptation, and whether they shape behavioral perception. Here, we trained mice to detect a target presented in background noise shortly after a change in the contrast of the background. The observed changes in cortical gain and behavioral detection followed the dynamics of a normative model of efficient contrast gain control; specifically, target detection and sensitivity improved slowly in low contrast, but degraded rapidly in high contrast. Auditory cortex was required for this task, and cortical responses were not only similarly affected by contrast but predicted variability in behavioral performance. Combined, our results demonstrate that dynamic gain adaptation supports efficient coding in auditory cortex and predicts the perception of sounds in noise.

View Publication Page
11/13/15 | Dynamics of CRISPR-Cas9 genome interrogation in living cells.
Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson J, Dahan M, Liu Z, Doudna JA, Tjian R
Science (New York, N.Y.). 2015 Nov 13;350(6262):823-6. doi: 10.1126/science.aac6572

The RNA-guided CRISPR-associated protein Cas9 is used for genome editing, transcriptional modulation, and live-cell imaging. Cas9-guide RNA complexes recognize and cleave double-stranded DNA sequences on the basis of 20-nucleotide RNA-DNA complementarity, but the mechanism of target searching in mammalian cells is unknown. Here, we use single-particle tracking to visualize diffusion and chromatin binding of Cas9 in living cells. We show that three-dimensional diffusion dominates Cas9 searching in vivo, and off-target binding events are, on average, short-lived (<1 second). Searching is dependent on the local chromatin environment, with less sampling and slower movement within heterochromatin. These results reveal how the bacterial Cas9 protein interrogates mammalian genomes and navigates eukaryotic chromatin structure.

View Publication Page
Looger Lab
04/02/15 | Dynamics of ionic shifts in cortical spreading depression.
Enger R, Tang W, Vindedal GF, Jensen V, Johannes Helm P, Sprengel R, Looger LL, Nagelhus EA
Cerebral Cortex. 2015 Apr 2;25(11):4469-76. doi: 10.1093/cercor/bhv054

Cortical spreading depression is a slowly propagating wave of near-complete depolarization of brain cells followed by temporary suppression of neuronal activity. Accumulating evidence indicates that cortical spreading depression underlies the migraine aura and that similar waves promote tissue damage in stroke, trauma, and hemorrhage. Cortical spreading depression is characterized by neuronal swelling, profound elevation of extracellular potassium and glutamate, multiphasic blood flow changes, and drop in tissue oxygen tension. The slow speed of the cortical spreading depression wave implies that it is mediated by diffusion of a chemical substance, yet the identity of this substance and the pathway it follows are unknown. Intercellular spread between gap junction-coupled neurons or glial cells and interstitial diffusion of K(+) or glutamate have been proposed. Here we use extracellular direct current potential recordings, K(+)-sensitive microelectrodes, and 2-photon imaging with ultrasensitive Ca(2+) and glutamate fluorescent probes to elucidate the spatiotemporal dynamics of ionic shifts associated with the propagation of cortical spreading depression in the visual cortex of adult living mice. Our data argue against intercellular spread of Ca(2+) carrying the cortical spreading depression wavefront and are in favor of interstitial K(+) diffusion, rather than glutamate diffusion, as the leading event in cortical spreading depression.

View Publication Page