Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-BfUTt7484DSUmejmGh6NWRUlV0BgbVWM | block
facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

252 Results

Showing 1-10 of 252 results
Your Criteria:
    Publications
    09/08/24 | 3D nanoscale architecture of the respiratory epithelium reveals motile cilia-rootlets-mitochondria axis of communication
    Vijayakumaran A, Godbehere C, Abuammar A, Breusegem SY, Hurst LR, Morone N, Llodra J, Dalbay MT, Tanvir NM, MacLellan-Gibson K, O’Callaghan C, Lorentzen E, , , Murray AJ, Narayan K, Mennella V
    bioRxiv. 2024 Sep 08:. doi: 10.1101/2024.09.08.611854

    A major frontier in single cell biology is decoding how transcriptional states result in cellular-level architectural changes, ultimately driving function. A remarkable example of this cellular remodelling program is the differentiation of airway stem cells into the human respiratory multiciliated epithelium, a tissue barrier protecting against bacteria, viruses and particulate matter. Here, we present the first isotropic three-dimensional map of the airway epithelium at the nanometre scale unveiling the coordinated changes in cellular organisation, organelle topology and contacts, occurring during multiciliogenesis. This analysis led us to discover a cellular mechanism of communication whereby motile cilia relay mechanical information to mitochondria through striated cytoskeletal fibres, the rootlets, to promote effective ciliary motility and ATP generation. Altogether, this study integrates nanometre-scale structural, functional and dynamic insights to elucidate fundamental mechanisms responsible for airway defence.

    View Publication Page
    Publications
    04/22/24 | A Bayesian Solution to Count the Number of Molecules within a Diffraction Limited Spot
    Alexander Hillsley , Johannes Stein , Paul W. Tillberg , David L. Stern , Jan Funke
    bioRxiv. 2024 Apr 22:. doi: 10.1101/2024.04.18.590066

    We address the problem of inferring the number of independently blinking fluorescent light emitters, when only their combined intensity contributions can be observed at each timepoint. This problem occurs regularly in light microscopy of objects that are smaller than the diffraction limit, where one wishes to count the number of fluorescently labelled subunits. Our proposed solution directly models the photo-physics of the system, as well as the blinking kinetics of the fluorescent emitters as a fully differentiable hidden Markov model. Given a trace of intensity over time, our model jointly estimates the parameters of the intensity distribution per emitter, their blinking rates, as well as a posterior distribution of the total number of fluorescent emitters. We show that our model is consistently more accurate and increases the range of countable subunits by a factor of two compared to current state-of-the-art methods, which count based on autocorrelation and blinking frequency, Further-more, we demonstrate that our model can be used to investigate the effect of blinking kinetics on counting ability, and therefore can inform experimental conditions that will maximize counting accuracy.

    View Publication Page
    Publications
    08/07/24 | A Cell Observatory to reveal the subcellular foundations of life.
    Betzig E
    Nat Methods. 2024 Aug 07:. doi: 10.1038/s41592-024-02379-3

    Imaging the 4D choreography of subcellular events in living multicellular organisms at high spatiotemporal resolution could reveal life’s fundamental principles. Yet extracting these principles from petabyte-scale image data requires fusing advanced light microscopy and cutting-edge machine learning models with biological insight and expertise.

    View Publication Page
    Publications
    11/05/24 | A consensus definition for deep layer 6 excitatory neurons in mouse neocortex
    Kim S, Babola TA, Lee K, Matney CJ, Spiegel AC, Liew MH, Schulteis EM, Coye AE, Proskurin M, Kang H, Kim JA, Chevee M, Lee K, Kanold PO, Goff LA, Kim J, Brown SP
    bioRxiv. 2024 Nov 05:. doi: 10.1101/2024.11.04.621933

    To understand neocortical function, we must first define its cell types. Recent studies indicate that neurons in the deepest cortical layer play roles in mediating thalamocortical interactions and modulating brain state and are implicated in neuropsychiatric disease. However, understanding the functions of deep layer 6 (L6b) neurons has been hampered by the lack of agreed upon definitions for these cell types. We compared commonly used methods for defining L6b neurons, including molecular, transcriptional and morphological approaches as well as transgenic mouse lines, and identified a core population of L6b neurons. This population does not innervate sensory thalamus, unlike layer 6 corticothalamic neurons (L6CThNs) in more superficial layer 6. Rather, single L6b neurons project ipsilaterally between cortical areas. Although L6b neurons undergo early developmental changes, we found that their intrinsic electrophysiological properties were stable after the first postnatal week. Our results provide a consensus definition for L6b neurons, enabling comparisons across studies.

    View Publication Page
    Publications
    10/02/24 | A Drosophila computational brain model reveals sensorimotor processing.
    Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Yu S, McKellar CE, Sterling A, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GS, Murthy M, Bidaye SS, Hampel S, Seeds AM, Scott K
    Nature. 2024 Oct 02;634(8032):210-219. doi: 10.1038/s41586-024-07763-9

    The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.

    View Publication Page
    Publications
    06/01/24 | A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction
    Xiao Li , Rico Gamuyao , Ming-Lun Wu , Woo Jung Cho , Nathan B. Kurtz , Sharon V. King , R.A. Petersen , Daniel R. Stabley , Caleb Lindow , Leslie Climer , Abbas Shirinifard , Francesca Ferrara , Robert E. Throm , Camenzind G. Robinson , Alex Carisey , Alison G. Tebo , Chi-Lun Chang
    J. Cell Biol.. 2024 Jul 01;223(9):e202311126. doi: 10.1083/jcb.202311126

    Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.

    View Publication Page
    Publications
    11/05/24 | A global dopaminergic learning rate enables adaptive foraging across many options
    Grima LL, Guo Y, Narayan L, Hermundstad AM, Dudman JT
    bioRxiv. 2024 Nov 05:. doi: 10.1101/2024.11.04.621923

    In natural environments, animals must efficiently allocate their choices across multiple concurrently available resources when foraging, a complex decision-making process not fully captured by existing models. To understand how rodents learn to navigate this challenge we developed a novel paradigm in which untrained, water-restricted mice were free to sample from six options rewarded at a range of deterministic intervals and positioned around the walls of a large ( 2m) arena. Mice exhibited rapid learning, matching their choices to integrated reward ratios across six options within the first session. A reinforcement learning model with separate states for staying or leaving an option and a dynamic, global learning rate was able to accurately reproduce mouse learning and decision-making. Fiber photometry recordings revealed that dopamine in the nucleus accumbens core (NAcC), but not dorsomedial striatum (DMS), more closely reflected the global learning rate than local error-based updating. Altogether, our results provide insight into the neural substrate of a learning algorithm that allows mice to rapidly exploit multiple options when foraging in large spatial environments.

    View Publication Page
    Publications
    08/16/24 | A high-throughput microfabricated platform for rapid quantification of metastatic potential.
    Bhattacharya S, Ettela A, Haydak J, Hobson CM, Stern A, Yoo M, Chew T, Gusella GL, Gallagher EJ, Hone JC, Azeloglu EU
    Sci Adv. 2024 Aug 16;10(33):eadk0015. doi: 10.1126/sciadv.adk0015

    Assays that measure morphology, proliferation, motility, deformability, and migration are used to study the invasiveness of cancer cells. However, native invasive potential of cells may be hidden from these contextual metrics because they depend on culture conditions. We created a micropatterned chip that mimics the native environmental conditions, quantifies the invasive potential of tumor cells, and improves our understanding of the malignancy signatures. Unlike conventional assays, which rely on indirect measurements of metastatic potential, our method uses three-dimensional microchannels to measure the basal native invasiveness without chemoattractants or microfluidics. No change in cell death or proliferation is observed on our chips. Using six cancer cell lines, we show that our system is more sensitive than other motility-based assays, measures of nuclear deformability, or cell morphometrics. In addition to quantifying metastatic potential, our platform can distinguish between motility and invasiveness, help study molecular mechanisms of invasion, and screen for targeted therapeutics.

    View Publication Page
    Publications
    07/01/24 | A Markovian dynamics for <i>Caenorhabditis elegans</i> behavior across scales
    Antonio C. Costa , Tosif Ahamed , David Jordan , Greg J. Stephens
    Proceedings of the National Academy of Sciences. 2024 Jul 01;121:e2318805121. doi: 10.1073/pnas.2318805121

    Complex phenotypes, such as an animal’s behavior, generally depend on an overwhelming number of processes that span a vast range of scales. While there is no reason that behavioral dynamics permit simple models, by subsuming inherent nonlinearities and memory into maximally predictive microstates, we find one for Caenorhabditis elegans foraging. The resulting “Markov worm” is effectively indistinguishable from real worm motion across a range of timescales, and we can decompose our model dynamics both to recover and reveal behavioral states. Finally, we connect postures to trajectories, illuminating how worms explore the environment in different behavioral states. How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm Caenorhabditis elegans, we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining. We translate these dynamics into movement using resistive force theory, capturing the statistical properties of foraging trajectories. Predictive across scales, we leverage the longest-lived eigenvectors of the inferred Markov chain to perform a top–down subdivision of the worm’s foraging behavior, revealing both “runs-and-pirouettes” as well as previously uncharacterized finer-scale behaviors. We use our model to investigate the relevance of these fine-scale behaviors for foraging success, recovering a trade-off between local and global search strategies.

    View Publication Page
    Publications
    09/20/24 | A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging.
    Farrants H, Shuai Y, Lemon WC, Monroy Hernandez C, Zhang D, Yang S, Patel R, Qiao G, Frei MS, Plutkis SE, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER
    Nat Methods. 2024 Sep 20:. doi: 10.1038/s41592-024-02411-6

    Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca concentration using fluorescence lifetime imaging microscopy (FLIM).

    View Publication Page