Filter
Result Type
Associated Lab
- Ahrens Lab (1) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Branson Lab (1) Apply Branson Lab filter
- Cardona Lab (13) Apply Cardona Lab filter
- Fetter Lab (5) Apply Fetter Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Jayaraman Lab (1) Apply Jayaraman Lab filter
- Looger Lab (1) Apply Looger Lab filter
- Schreiter Lab (1) Apply Schreiter Lab filter
- Simpson Lab (1) Apply Simpson Lab filter
- Truman Lab (13) Apply Truman Lab filter
- Remove Zlatic Lab filter Zlatic Lab
Associated Project Team
Associated Support Team
26 Results
Showing 1-10 of 26 resultsLongitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We show here that establishment of select CNS longitudinal tracts and formation of precise mechanosensory afferent innervation to the same CNS region are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but serve distinct guidance functions. Localized Sema-2b attraction promotes the initial assembly of a subset of CNS longitudinal projections and subsequent targeting of chordotonal sensory afferent axons to these same longitudinal connectives, whereas broader Sema-2a repulsion serves to prevent aberrant innervation. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at PlexB and are critical for functional neural circuit assembly.
Natural events present multiple types of sensory cues, each detected by a specialized sensory modality. Combining information from several modalities is essential for the selection of appropriate actions. Key to understanding multimodal computations is determining the structural patterns of multimodal convergence and how these patterns contribute to behaviour. Modalities could converge early, late or at multiple levels in the sensory processing hierarchy. Here we show that combining mechanosensory and nociceptive cues synergistically enhances the selection of the fastest mode of escape locomotion in Drosophila larvae. In an electron microscopy volume that spans the entire insect nervous system, we reconstructed the multisensory circuit supporting the synergy, spanning multiple levels of the sensory processing hierarchy. The wiring diagram revealed a complex multilevel multimodal convergence architecture. Using behavioural and physiological studies, we identified functionally connected circuit nodes that trigger the fastest locomotor mode, and others that facilitate it, and we provide evidence that multiple levels of multimodal integration contribute to escape mode selection. We propose that the multilevel multimodal convergence architecture may be a general feature of multisensory circuits enabling complex input–output functions and selective tuning to ecologically relevant combinations of cues.
Cbl-associated protein (CAP) localizes to focal adhesions and associates with numerous cytoskeletal proteins; however, its physiological roles remain unknown. Here, we demonstrate that Drosophila CAP regulates the organization of two actin-rich structures in Drosophila: muscle attachment sites (MASs), which connect somatic muscles to the body wall; and scolopale cells, which form an integral component of the fly chordotonal organs and mediate mechanosensation. Drosophila CAP mutants exhibit aberrant junctional invaginations and perturbation of the cytoskeletal organization at the MAS. CAP depletion also results in collapse of scolopale cells within chordotonal organs, leading to deficits in larval vibration sensation and adult hearing. We investigate the roles of different CAP protein domains in its recruitment to, and function at, various muscle subcellular compartments. Depletion of the CAP-interacting protein Vinculin results in a marked reduction in CAP levels at MASs, and vinculin mutants partially phenocopy Drosophila CAP mutants. These results show that CAP regulates junctional membrane and cytoskeletal organization at the membrane-cytoskeletal interface of stretch-sensitive structures, and they implicate integrin signaling through a CAP/Vinculin protein complex in stretch-sensitive organ assembly and function.
The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.
Even a simple sensory stimulus can elicit distinct innate behaviors and sequences. During sensorimotor decisions, competitive interactions among neurons that promote distinct behaviors must ensure the selection and maintenance of one behavior, while suppressing others. The circuit implementation of these competitive interactions is still an open question. By combining comprehensive electron microscopy reconstruction of inhibitory interneuron networks, modeling, electrophysiology, and behavioral studies, we determined the circuit mechanisms that contribute to the Drosophila larval sensorimotor decision to startle, explore, or perform a sequence of the two in response to a mechanosensory stimulus. Together, these studies reveal that, early in sensory processing, (1) reciprocally connected feedforward inhibitory interneurons implement behavioral choice, (2) local feedback disinhibition provides positive feedback that consolidates and maintains the chosen behavior, and (3) lateral disinhibition promotes sequence transitions. The combination of these interconnected circuit motifs can implement both behavior selection and the serial organization of behaviors into a sequence.
To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.
A single nervous system can generate many distinct motor patterns. Identifying which neurons and circuits control which behaviors has been a laborious piecemeal process, usually for one observer-defined behavior at a time. We present a fundamentally different approach to neuron-behavior mapping. We optogenetically activated 1,054 identified neuron lines in Drosophila larva and tracked the behavioral responses from 37,780 animals. Applying multiscale unsupervised structure learning methods to the behavioral data identified 29 discrete statistically distinguishable and observer-unbiased behavioral phenotypes. Mapping the neural lines to the behavior(s) they evoke provides a behavioral reference atlas for neuron subsets covering a large fraction of larval neurons. This atlas is a starting point for connectivity- and activity-mapping studies to further investigate the mechanisms by which neurons mediate diverse behaviors.
Animals adaptively respond to a tactile stimulus by choosing an ethologically relevant behavior depending on the location of the stimuli. Here, we investigate how somatosensory inputs on different body segments are linked to distinct motor outputs in Drosophila larvae. Larvae escape by backward locomotion when touched on the head, while they crawl forward when touched on the tail. We identify a class of segmentally repeated second-order somatosensory interneurons, that we named Wave, whose activation in anterior and posterior segments elicit backward and forward locomotion, respectively. Anterior and posterior Wave neurons extend their dendrites in opposite directions to receive somatosensory inputs from the head and tail, respectively. Downstream of anterior Wave neurons, we identify premotor circuits including the neuron A03a5, which together with Wave, is necessary for the backward locomotion touch response. Thus, Wave neurons match their receptive field to appropriate motor programs by participating in different circuits in different segments.
Efforts to map neural circuits have been galvanized by the development of genetic technologies that permit the manipulation of targeted sets of neurons in the brains of freely behaving animals. The success of these efforts relies on the experimenter's ability to target arbitrarily small subsets of neurons for manipulation, but such specificity of targeting cannot routinely be achieved using existing methods. In Drosophila melanogaster, a widely used technique for refined cell-type specific manipulation is the Split GAL4 system, which augments the targeting specificity of the binary GAL4-UAS system by making GAL4 transcriptional activity contingent upon two enhancers, rather than one. To permit more refined targeting, we introduce here the "Killer Zipper" (KZip(+)), a suppressor that makes Split GAL4 targeting contingent upon a third enhancer. KZip(+) acts by disrupting both the formation and activity of Split GAL4 heterodimers, and we show how this added layer of control can be used to selectively remove unwanted cells from a Split GAL4 expression pattern or to subtract neurons of interest from a pattern to determine their requirement in generating a given phenotype. To facilitate application of the KZip(+) technology, we have developed a versatile set of LexAop-KZip(+) fly lines that can be used directly with the large number of LexA driver lines with known expression patterns. The Killer Zipper significantly sharpens the precision of neuronal genetic control available in Drosophila and may be extended to other organisms where Split GAL4-like systems are used.
Dopaminergic neurons serve multiple functions, including reinforcement processing during associative learning [1-12]. It is thus warranted to understand which dopaminergic neurons mediate which function. We study larval Drosophila, in which only approximately 120 of a total of 10,000 neurons are dopaminergic, as judged by the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis [5, 13]. Dopaminergic neurons mediating reinforcement in insect olfactory learning target the mushroom bodies, a higher-order "cortical" brain region [1-5, 11, 12, 14, 15]. We discover four previously undescribed paired neurons, the primary protocerebral anterior medial (pPAM) neurons. These neurons are TH positive and subdivide the medial lobe of the mushroom body into four distinct subunits. These pPAM neurons are acutely necessary for odor-sugar reward learning and require intact TH function in this process. However, they are dispensable for aversive learning and innate behavior toward the odors and sugars employed. Optogenetical activation of pPAM neurons is sufficient as a reward. Thus, the pPAM neurons convey a likely dopaminergic reward signal. In contrast, DL1 cluster neurons convey a corresponding punishment signal [5], suggesting a cellular division of labor to convey dopaminergic reward and punishment signals. On the level of individually identified neurons, this uncovers an organizational principle shared with adult Drosophila and mammals [1-4, 7, 9, 10] (but see [6]). The numerical simplicity and connectomic tractability of the larval nervous system [16-19] now offers a prospect for studying circuit principles of dopamine function at unprecedented resolution.