Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Ahrens Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

68 Publications

Showing 1-10 of 68 results
09/23/25 | Emergence of Functional Heart-Brain Circuits in a Vertebrate.
Hernandez-Nunez L, Avrami J, Shi S, Markarian A, Boulanger-Weill J, Zarghani-Shiraz A, Ahrens M, Engert F, Fishman MC
bioRxiv. 2025 Sep 23:. doi: 10.1101/2025.09.22.677693

The early formation of sensorimotor circuits is essential for survival. While the development and function of exteroceptive circuits and their associated motor pathways are well characterized, far less is known about the circuits that convey viscerosensory inputs to the brain and transmit visceromotor commands from the central nervous system to internal organs. Technical limitations, such as the development of viscerosensory and visceromotor circuits and the invasiveness of procedures required to access them, have hindered studies of their functional development in mammals. Using larval zebrafish-which are genetically accessible and optically transparent-we tracked, , how cardiosensory and cardiomotor neural circuits assemble and begin to function. We uncovered a staged program. First, a minimal efferent circuit suffices for heart-rate control: direct brain-to-heart vagal motor innervation is required, intracardiac neurons are not, and heart rate is governed exclusively by the motor vagus nerve. Within the hindbrain, we functionally localize a vagal premotor population that drives this early efferent control. Second, sympathetic innervation arrives and enhances the dynamics and amplitude of cardiac responses, as neurons in the most anterior sympathetic ganglia acquire the ability to drive cardiac acceleration. These neurons exhibit proportional, integral, and derivative-like relationships to heart rate, consistent with controller motifs that shape gain and dynamics. Third, vagal sensory neurons innervate the heart. Distinct subsets increase activity when heart rate falls or rises, and across spontaneous fluctuations, responses to aversive stimuli, and optogenetically evoked cardiac perturbations, their dynamics are captured by a single canonical temporal kernel with neuron-specific phase offsets, supporting a population code for heart rate. This temporally segregated maturation isolates three experimentally tractable regimes-unidirectional brain-to-heart communication, dual efferent control, and closed-loop control after sensory feedback engages-providing a framework for mechanistic dissection of organism-wide heart-brain circuits.

View Publication Page
09/11/25 | <I>stk32a</I> links sleep homeostasis to suppression of sensory and motor systems
Tran S, Emtage J, Zhang C, Liu X, Lecoeuche M, Andreev A, Oikonomou G, Narayan S, Garcia B, Cammidge T, Gonzales C, Hurley H, Yap M, Li S, Wang F, Wang T, Ahrens MB, Chou T, Xu M, Liu Q, Prober DA
bioRxiv. 2025 Sep 11:. doi: 10.1101/2025.09.09.675098

Sleep is regulated by a homeostatic process and associated with an increased arousal threshold, but the genetic and neuronal mechanisms that implement these essential features of sleep remain poorly understood. To address these fundamental questions, we performed a zebrafish genetic screen informed by human genome-wide association studies. We found that mutation of serine/threonine kinase 32a (stk32a) results in increased sleep and impaired sleep homeostasis in both zebrafish and mice, and that stk32a acts downstream of neurotensin signaling and the serotonergic raphe in zebrafish. stk32a mutation reduces phosphorylation of neurofilament proteins, which are co-expressed with stk32a in neurons that regulate motor activity and in lateral line hair cells that detect environmental stimuli, and ablating these cells phenocopies stk32a mutation. Neurotensin signaling inhibits specific sensory and motor populations, and blocks stimulus-evoked responses of neurons that relay sensory information from hair cells to the brain. Our work thus shows that stk32a is an evolutionarily conserved sleep regulator that links neuropeptidergic and neuromodulatory systems to homeostatic sleep drive and changes in arousal threshold, which are implemented through suppression of specific sensory and motor systems.

View Publication Page
08/22/25 | Imaging cellular activity simultaneously across all organs of a vertebrate reveals body-wide circuits
Ruetten VM, Zheng W, Siwanowicz I, Mensh BD, Eddison M, Hu A, Chi Y, Lemire AL, Guo C, Kadobianskyi M, Renz M, Lelek-Greskovic S, He Y, Close K, Ihrke G, Dev A, Petruncio A, Wan Y, Engert F, Fishman MC, Judkewitz B, Rubinov M, Keller PJ, Satou C, Yu G, Tillberg PW, Sahani M, Ahrens MB
bioRxiv. 2025 August 22:. doi: 10.1101/2025.08.20.670374

All cells in an animal collectively ensure, moment-to-moment, the survival of the whole organism in the face of environmental stressors1,2. Physiology seeks to elucidate the intricate network of interactions that sustain life, which often span multiple organs, cell types, and timescales, but a major challenge lies in the inability to simultaneously record time-varying cellular activity throughout the entire body.We developed WHOLISTIC, a method to image second-timescale, time-varying intracellular dynamics across cell-types of the vertebrate body. By advancing and integrating volumetric fluorescence microscopy, machine learning, and pancellular transgenic expression of calcium sensors in transparent young Danio rerio (zebrafish) and adult Danionella, the method enables real-time recording of cellular dynamics across the organism. Calcium is a universal intracellular messenger, with a large array of cellular processes depending on changes in calcium concentration across varying time-scales, making it an ideal proxy of cellular activity3.Using this platform to screen the dynamics of all cells in the body, we discovered unexpected responses of specific cell types to stimuli, such as chondrocyte reactions to cold, meningeal responses to ketamine, and state-dependent activity, such as oscillatory ependymal-cell activity during periods of extended motor quiescence. At the organ scale, the method uncovered pulsating traveling waves along the kidney nephron. At the multi-organ scale, we uncovered muscle synergies and independencies, as well as muscle-organ interactions. Integration with optogenetics allowed us to all-optically determine the causal direction of brain-body interactions. At the whole-organism scale, the method captured the rapid brainstem-controlled redistribution of blood flow across the body.Finally, we advanced Whole-Body Expansion Microscopy4 to provide ground-truth molecular and ultrastructural anatomical context, explaining the spatiotemporal structure of activity captured by WHOLISTIC. Together, these innovations establish a new paradigm for systems biology, bridging cellular and organismal physiology, with broad implications for both fundamental research and drug discovery.

View Publication Page
07/14/25 | Fishexplorer: A multimodal cellular atlas platform for neuronal circuit dissection in larval zebrafish
Vohra SK, Eberle M, Boulanger-Weill J, Petkova MD, Schuhknecht GF, Herrera KJ, Kämpf F, Ruetten VM, Lichtman JW, Engert F, Randlett O, Bahl A, Isoe Y, Hege H, Baum D
bioRxiv. 2025 Jul 14:. doi: 10.1101/2025.07.14.664689

Understanding how neural circuits give rise to behavior requires comprehensive knowledge of neuronal morphology, connectivity, and function. Atlas platforms play a critical role in enabling the visualization, exploration, and dissemination of such information. Here, we present FishExplorer, an interactive and expandable community platform designed to integrate and analyze multimodal brain data from larval zebrafish. FishExplorer supports datasets acquired through light microscopy (LM), electron microscopy (EM), and X-ray imaging, all co-registered within a unified spatial coordinate system which enables seamless comparison of neuronal morphologies and synaptic connections. To further assist circuit analysis, FishExplorer includes a suite of tools for querying and visualizing connectivity at the whole-brain scale. By integrating data from recent large-scale EM reconstructions (presented in companion studies), FishExplorer enables researchers to validate circuit models, explore wiring principles, and generate new hypotheses. As a continuously evolving resource, FishExplorer is designed to facilitate collaborative discovery and serve the growing needs of the teleost neuroscience community.

View Publication Page
06/15/25 | A connectomic resource for neural cataloguing and circuit dissection of the larval zebrafish brain
Petkova MD, Januszewski M, Blakely T, Herrera KJ, Schuhknecht GF, Tiller R, Choi J, Schalek RL, Boulanger-Weill J, Peleg A, Wu Y, Wang S, Troidl J, Kumar Vohra S, Wei D, Lin Z, Bahl A, Tapia JC, Iyer N, Miller ZT, Hebert KB, Pavarino EC, Taylor M, Deng Z, Stingl M, Hockling D, Hebling A, Wang RC, Zhang LL, Dvorak S, Faik Z, King KI, Goel P, Wagner-Carena J, Aley D, Chalyshkan S, Contreas D, Li X, Muthukumar AV, Vernaglia MS, Carrasco TT, Melnychuck S, Yan T, Dalal A, DiMartino JM, Brown S, Safo-Mensa N, Greenberg E, Cook M, Finley-May S, Flynn MA, Hopkins GP, Kovalyak J, Leonard M, Lohff A, Ordish C, Scott AL, Takemura S, Walsh C, Walsh JJ, Berger DR, Pfister H, Berg S, Knecht C, Meissner GW, Korff W, Ahrens MB, Jain V, Lichtman JW, Engert F
bioRxiv. 2025 Jun 16:. doi: 10.1101/2025.06.10.658982

We present a correlated light and electron microscopy (CLEM) dataset from a 7-day-old larval zebrafish, integrating confocal imaging of genetically labeled excitatory (vglut2a) and inhibitory (gad1b) neurons with nanometer-resolution serial section EM. The dataset spans the brain and anterior spinal cord, capturing >180,000 segmented soma, >40,000 molecularly annotated neurons, and 30 million synapses, most of which were classified as excitatory, inhibitory, or modulatory. To characterize the directional flow of activity across the brain, we leverage the synaptic and cell body annotations to compute region-wise input and output drive indices at single cell resolution. We illustrate the dataset’s utility by dissecting and validating circuits in three distinct systems: water flow direction encoding in the lateral line, recurrent excitation and contralateral inhibition in a hindbrain motion integrator, and functionally relevant targeted long-range projections from a tegmental excitatory nucleus, demonstrating that this resource enables rigorous hypothesis testing as well as exploratory-driven circuit analysis. The dataset is integrated into an open-access platform optimized to facilitate community reconstruction and discovery efforts throughout the larval zebrafish brain.

 

Preprint: https://www.biorxiv.org/content/early/2025/06/15/2025.06.10.658982

View Publication Page
06/06/25 | Voltage imaging reveals circuit computations in the raphe underlying serotonin-mediated motor vigor learning
Kawashima T, Wei Z, Haruvi R, Shainer I, Narayan S, Baier H, Ahrens MB
Neuron. 2025 Jun 06:. doi: 10.1016/j.neuron.2025.05.017

As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling encoding of action outcomes and filtering out learning-irrelevant visual signals. Using light-sheet microscopy, voltage sensors, and neurotransmitter/modulator sensors, we tracked millisecond-timescale neuronal input-output computations during behavior. Swim commands initially inhibited serotonergic neurons via GABA, closing the gate to spiking. Immediately after, the gate briefly opened: voltage increased consistent with post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin secretion and modulating motor vigor. Ablating GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe, suggesting the existence of similarly fast and precise circuit computations across neuromodulatory nuclei.

 

Preprint: https://doi.org/10.1101/2024.09.15.613083

View Publication Page
05/15/25 | Norepinephrine changes behavioral state via astroglial purinergic signaling
Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB
Science. 2025 May 15:. doi: 10.1126/science.adq5233

Both neurons and glia communicate through diffusible neuromodulators; however, how neuron-glial interactions in such neuromodulatory networks influence circuit computation and behavior is unclear. During futility-induced behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine (NE) drives fast excitation and delayed inhibition of behavior and circuit activity. We found that astroglial purinergic signaling implements the inhibitory arm of this motif. In larval zebrafish, NE triggers astroglial release of adenosine triphosphate (ATP), extracellular conversion of ATP into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. Our results suggest a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in NE-mediated behavioral and brain state transitions and position astroglia as important effectors in neuromodulatory signaling.

 

Preprint: https://www.biorxiv.org/content/early/2024/05/23/2024.05.23.595576

View Publication Page
04/04/25 | Fast, accurate, and versatile data analysis platform for the quantification of molecular spatiotemporal signals.
Mi X, Chen AB, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim J, Ruetten VM, Wang Y, Wang M, Zhang W, Zheng W, Reitman ME, Huang Y, Wang X, Li L, Deng H, Shi S, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G
Cell. 2025 Apr 04:. doi: 10.1016/j.cell.2025.03.012

Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.

Preprint: https://doi.org/10.1101/2024.05.02.592259

View Publication Page
03/30/25 | Whole-brain, all-optical interrogation of neuronal dynamics underlying gut interoception in zebrafish
Chen W, James B, Ruetten VM, Banala S, Wei Z, Fleishman G, Rubinov M, Fishman MC, Engert F, Lavis LD, Fitzgerald JE, Ahrens MB
bioRxiv. 2025 Mar 30:. doi: 10.1101/2025.03.26.645305

Internal signals from the body and external signals from the environment are processed by brain-wide circuits to guide behavior. However, the complete brain-wide circuit activity underlying interoception—the perception of bodily signals—and its interactions with sensorimotor circuits remain unclear due to technical barriers to accessing whole-brain activity at the cellular level during organ physiology perturbations. We developed an all-optical system for whole-brain neuronal imaging in behaving larval zebrafish during optical uncaging of gut-targeted nutrients and visuo-motor stimulation. Widespread neural activity throughout the brain encoded nutrient delivery, unfolding on multiple timescales across many specific peripheral and central regions. Evoked activity depended on delivery location and occurred with amino acids and D-glucose, but not L-glucose. Many gut-sensitive neurons also responded to swimming and visual stimuli, with brainstem areas primarily integrating gut and motor signals and midbrain regions integrating gut and visual signals. This platform links body-brain communication studies to brain-wide neural computation in awake, behaving vertebrates.

View Publication Page
02/06/25 | Live imaging of the extracellular matrix with a glycan-binding fluorophore.
Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Pratik Kumar , Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Wang S, Weaver VM, Pedram K
Nat Methods. 2025 Feb 06:. doi: 10.1038/s41592-024-02590-2

All multicellular systems produce and dynamically regulate extracellular matrices (ECMs) that play essential roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small-molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, non-perturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

View Publication Page