Filter
Associated Lab
- Ahrens Lab (61) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Branson Lab (1) Apply Branson Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Freeman Lab (5) Apply Freeman Lab filter
- Harris Lab (2) Apply Harris Lab filter
- Jayaraman Lab (2) Apply Jayaraman Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Keller Lab (5) Apply Keller Lab filter
- Lavis Lab (2) Apply Lavis Lab filter
- Liu (Zhe) Lab (1) Apply Liu (Zhe) Lab filter
- Looger Lab (7) Apply Looger Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (3) Apply Podgorski Lab filter
- Schreiter Lab (4) Apply Schreiter Lab filter
- Shroff Lab (1) Apply Shroff Lab filter
- Svoboda Lab (4) Apply Svoboda Lab filter
- Turaga Lab (2) Apply Turaga Lab filter
- Turner Lab (2) Apply Turner Lab filter
- Wang (Shaohe) Lab (1) Apply Wang (Shaohe) Lab filter
- Zlatic Lab (1) Apply Zlatic Lab filter
Associated Project Team
Publication Date
- 2025 (1) Apply 2025 filter
- 2024 (9) Apply 2024 filter
- 2023 (4) Apply 2023 filter
- 2022 (4) Apply 2022 filter
- 2021 (2) Apply 2021 filter
- 2020 (4) Apply 2020 filter
- 2019 (5) Apply 2019 filter
- 2018 (4) Apply 2018 filter
- 2017 (2) Apply 2017 filter
- 2016 (7) Apply 2016 filter
- 2015 (3) Apply 2015 filter
- 2014 (3) Apply 2014 filter
- 2013 (5) Apply 2013 filter
- 2012 (1) Apply 2012 filter
- 2011 (1) Apply 2011 filter
- 2010 (1) Apply 2010 filter
- 2008 (3) Apply 2008 filter
- 2006 (2) Apply 2006 filter
Type of Publication
61 Publications
Showing 11-20 of 61 resultsThe brain is tasked with choosing actions that maximize an animal's chances of survival and reproduction. These choices must be flexible and informed by the current state of the environment, the needs of the body, and the outcomes of past actions. This information is physiologically encoded and processed across different brain regions on a wide range of spatial scales, from molecules in single synapses to networks of brain areas. Uncovering these spatially distributed neural interactions underlying behavior requires investigations that span a similar range of spatial scales. Larval zebrafish, given their small size, transparency, and ease of genetic access, are a good model organism for such investigations, allowing the use of modern microscopy, molecular biology, and computational techniques. These approaches are yielding new insights into the mechanistic basis of behavioral states, which we review here and compare to related studies in mammalian species.
Genetically encodable calcium ion (Ca) indicators (GECIs) based on green fluorescent proteins (GFP) are powerful tools for imaging of cell signaling and neural activity in model organisms. Following almost 2 decades of steady improvements in the GFP-based GCaMP series of GECIs, the performance of the most recent generation (i.e., jGCaMP7) may have reached its practical limit due to the inherent properties of GFP. In an effort to sustain the steady progression toward ever-improved GECIs, we undertook the development of a new GECI based on the bright monomeric GFP, mNeonGreen (mNG). The resulting indicator, mNG-GECO1, is 60% brighter than GCaMP6s in vitro and provides comparable performance as demonstrated by imaging Ca dynamics in cultured cells, primary neurons, and in vivo in larval zebrafish. These results suggest that mNG-GECO1 is a promising next-generation GECI that could inherit the mantle of GCaMP and allow the steady improvement of GECIs to continue for generations to come.
Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, "Voltron", that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 min of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.
Increasing the volumetric imaging speed of light-sheet microscopy will improve its ability to detect fast changes in neural activity. Here, a system is introduced for brain-wide imaging of neural activity in the larval zebrafish by coupling structured illumination with cubic phase extended depth-of-field (EDoF) pupil encoding. This microscope enables faster light-sheet imaging and facilitates arbitrary plane scanning—removing constraints on acquisition speed, alignment tolerances, and physical motion near the sample. The usefulness of this method is demonstrated by performing multi-plane calcium imaging in the fish brain with a 416×832×160 μm field of view at 33 Hz. The optomotor response behavior of the zebrafish is monitored at high speeds, and time-locked correlations of neuronal activity are resolved across its brain.
The small size and translucency of larval zebrafish () have made it a unique experimental system to investigate whole-brain neural circuit structure and function. Still, the connectivity patterns between most neuronal types remain mostly unknown. This gap in knowledge underscores the critical need for effective neural circuit mapping tools, especially ones that can integrate structural and functional analyses. To address this, we previously developed a vesicular stomatitis virus (VSV) based approach called Tracer with Restricted Anterograde Spread (TRAS). TRAS utilizes lentivirus to complement replication-incompetent VSV (VSVΔG) to allow restricted (monosynaptic) anterograde labeling from projection neurons to their target cells in the brain. Here, we report the second generation of TRAS (TRAS-M51R), which utilizes a mutant variant of VSVΔG [VSV(M51R)ΔG] with reduced cytotoxicity. Within the primary visual pathway, we found that TRAS-M51R significantly improved long-term viability of transsynaptic labeling (compared to TRAS) while maintaining anterograde spread activity. By using Cre-expressing VSV(M51R)ΔG, TRAS-M51R could selectively label excitatory ( positive) and inhibitory ( positive) retinorecipient neurons. We further show that these labeled excitatory and inhibitory retinorecipient neurons retained neuronal excitability upon visual stimulation at 5-8 days post fertilization (2-5 days post-infection). Together, these findings show that TRAS-M51R is suitable for neural circuit studies that integrate structural connectivity, cell-type identity, and neurophysiology.
Animals need to rapidly learn to recognize and avoid predators. This ability may be especially important for young animals due to their increased vulnerability. It is unknown whether, and how, nascent vertebrates are capable of such rapid learning. Here, we used a robotic predator-prey interaction assay to show that 1 week after fertilization-a developmental stage where they have approximately 1% the number of neurons of adults-zebrafish larvae rapidly and robustly learn to recognize a stationary object as a threat after the object pursues the fish for ∼1 min. Larvae continue to avoid the threatening object after it stops moving and can learn to distinguish threatening from non-threatening objects of a different color. Whole-brain functional imaging revealed the multi-timescale activity of noradrenergic neurons and forebrain circuits that encoded the threat. Chemogenetic ablation of those populations prevented the learning. Thus, a noradrenergic and forebrain multiregional network underlies the ability of young vertebrates to rapidly learn to recognize potential predators within their first week of life.
Animals need to rapidly learn to recognize and avoid predators. This ability may be especially important for young animals due to their increased vulnerability. It is unknown whether, and how, nascent vertebrates are capable of such rapid learning. Here, we used a robotic predator-prey interaction assay to show that 1 week after fertilization-a developmental stage where they have approximately 1% the number of neurons of adults-zebrafish larvae rapidly and robustly learn to recognize a stationary object as a threat after the object pursues the fish for ∼1 min. Larvae continue to avoid the threatening object after it stops moving and can learn to distinguish threatening from non-threatening objects of a different color. Whole-brain functional imaging revealed the multi-timescale activity of noradrenergic neurons and forebrain circuits that encoded the threat. Chemogenetic ablation of those populations prevented the learning. Thus, a noradrenergic and forebrain multiregional network underlies the ability of young vertebrates to rapidly learn to recognize potential predators within their first week of life.
Calcium imaging has been widely adopted for its ability to record from large neuronal populations. To summarize the time course of neural activity, dimensionality reduction methods, which have been applied extensively to population spiking activity, may be particularly useful. However, it is unclear if the dimensionality reduction methods applied to spiking activity are appropriate for calcium imaging. We thus carried out a systematic study of design choices based on standard dimensionality reduction methods. We also developed a novel method to perform deconvolution and dimensionality reduction simultaneously (termed CILDS). CILDS most accurately recovered the single-trial, low-dimensional time courses from calcium imaging that would have been recovered from spiking activity. CILDS also outperformed the other methods on calcium imaging recordings from larval zebrafish and mice. More broadly, this study represents a foundation for summarizing calcium imaging recordings of large neuronal populations using dimensionality reduction in diverse experimental settings.
Biophysically accurate multicompartmental models of individual neurons have significantly advanced our understanding of the input-output function of single cells. These models depend on a large number of parameters that are difficult to estimate. In practice, they are often hand-tuned to match measured physiological behaviors, thus raising questions of identifiability and interpretability. We propose a statistical approach to the automatic estimation of various biologically relevant parameters, including 1) the distribution of channel densities, 2) the spatiotemporal pattern of synaptic input, and 3) axial resistances across extended dendrites. Recent experimental advances, notably in voltage-sensitive imaging, motivate us to assume access to: i) the spatiotemporal voltage signal in the dendrite and ii) an approximate description of the channel kinetics of interest. We show here that, given i and ii, parameters 1-3 can be inferred simultaneously by nonnegative linear regression; that this optimization problem possesses a unique solution and is guaranteed to converge despite the large number of parameters and their complex nonlinear interaction; and that standard optimization algorithms efficiently reach this optimum with modest computational and data requirements. We demonstrate that the method leads to accurate estimations on a wide variety of challenging model data sets that include up to about 10(4) parameters (roughly two orders of magnitude more than previously feasible) and describe how the method gives insights into the functional interaction of groups of channels.