Filter
Associated Lab
- Ahrens Lab (61) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Branson Lab (1) Apply Branson Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Freeman Lab (5) Apply Freeman Lab filter
- Harris Lab (2) Apply Harris Lab filter
- Jayaraman Lab (2) Apply Jayaraman Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Keller Lab (5) Apply Keller Lab filter
- Lavis Lab (2) Apply Lavis Lab filter
- Liu (Zhe) Lab (1) Apply Liu (Zhe) Lab filter
- Looger Lab (7) Apply Looger Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (3) Apply Podgorski Lab filter
- Schreiter Lab (4) Apply Schreiter Lab filter
- Shroff Lab (1) Apply Shroff Lab filter
- Svoboda Lab (4) Apply Svoboda Lab filter
- Turaga Lab (2) Apply Turaga Lab filter
- Turner Lab (2) Apply Turner Lab filter
- Wang (Shaohe) Lab (1) Apply Wang (Shaohe) Lab filter
- Zlatic Lab (1) Apply Zlatic Lab filter
Associated Project Team
Publication Date
- 2025 (1) Apply 2025 filter
- 2024 (9) Apply 2024 filter
- 2023 (4) Apply 2023 filter
- 2022 (4) Apply 2022 filter
- 2021 (2) Apply 2021 filter
- 2020 (4) Apply 2020 filter
- 2019 (5) Apply 2019 filter
- 2018 (4) Apply 2018 filter
- 2017 (2) Apply 2017 filter
- 2016 (7) Apply 2016 filter
- 2015 (3) Apply 2015 filter
- 2014 (3) Apply 2014 filter
- 2013 (5) Apply 2013 filter
- 2012 (1) Apply 2012 filter
- 2011 (1) Apply 2011 filter
- 2010 (1) Apply 2010 filter
- 2008 (3) Apply 2008 filter
- 2006 (2) Apply 2006 filter
Type of Publication
61 Publications
Showing 21-30 of 61 resultsCalcium imaging with protein-based indicators is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful patterns embedded within complex and rich data sources. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a range of biosensors (calcium, norepinephrine, ATP, acetylcholine, dopamine), cell types (astrocytes, oligodendrocytes, microglia, neurons), organs (brains and spinal cords), animal models (zebrafish and mouse), and imaging modalities (confocal, two-photon, light sheet). As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Differentiable simulations of optical systems can be combined with deep learning-based reconstruction networks to enable high performance computational imaging via end-to-end (E2E) optimization of both the optical encoder and the deep decoder. This has enabled imaging applications such as 3D localization microscopy, depth estimation, and lensless photography via the optimization of local optical encoders. More challenging computational imaging applications, such as 3D snapshot microscopy which compresses 3D volumes into single 2D images, require a highly non-local optical encoder. We show that existing deep network decoders have a locality bias which prevents the optimization of such highly non-local optical encoders. We address this with a decoder based on a shallow neural network architecture using global kernel Fourier convolutional neural networks (FourierNets). We show that FourierNets surpass existing deep network based decoders at reconstructing photographs captured by the highly non-local DiffuserCam optical encoder. Further, we show that FourierNets enable E2E optimization of highly non-local optical encoders for 3D snapshot microscopy. By combining FourierNets with a large-scale multi-GPU differentiable optical simulation, we are able to optimize non-local optical encoders 170× to 7372× larger than prior state of the art, and demonstrate the potential for ROI-type specific optical encoding with a programmable microscope.
When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states.
The ability to measure synaptic connectivity and properties is essential for understanding neuronal circuits. However, existing methods that allow such measurements at cellular resolution are laborious and technically demanding. Here, we describe a system that allows such measurements in a high-throughput way by combining two-photon optogenetics and volumetric Ca2+ imaging with whole-cell recording. We reveal a circuit motif for generating fast undulatory locomotion in zebrafish.
Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.
All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.
Many perceptual processes and neural computations, such as speech recognition, motor control and learning, depend on the ability to measure and mark the passage of time. However, the processes that make such temporal judgements possible are unknown. A number of different hypothetical mechanisms have been advanced, all of which depend on the known, temporally predictable evolution of a neural or psychological state, possibly through oscillations or the gradual decay of a memory trace. Alternatively, judgements of elapsed time might be based on observations of temporally structured, but stochastic processes. Such processes need not be specific to the sense of time; typical neural and sensory processes contain at least some statistical structure across a range of time scales. Here, we investigate the statistical properties of an estimator of elapsed time which is based on a simple family of stochastic process.
We describe a class of models that predict how the instantaneous firing rate of a neuron depends on a dynamic stimulus. The models utilize a learnt pointwise nonlinear transform of the stimulus, followed by a linear filter that acts on the sequence of transformed inputs. In one case, the nonlinear transform is the same at all filter lag-times. Thus, this "input nonlinearity" converts the initial numerical representation of stimulus value to a new representation that provides optimal input to the subsequent linear model. We describe algorithms that estimate both the input nonlinearity and the linear weights simultaneously; and present techniques to regularise and quantify uncertainty in the estimates. In a second approach, the model is generalized to allow a different nonlinear transform of the stimulus value at each lag-time. Although more general, this model is algorithmically more straightforward to fit. However, it has many more degrees of freedom than the first approach, thus requiring more data for accurate estimation. We test the feasibility of these methods on synthetic data, and on responses from a neuron in rodent barrel cortex. The models are shown to predict responses to novel data accurately, and to recover several important neuronal response properties.
Due to their small size and transparency, zebrafish larvae are amenable to a range of fluorescence microscopy techniques. With the development of sensitive genetically encoded calcium indicators, this has extended to the whole-brain imaging of neural activity with cellular resolution. This technique has been used to study brain-wide population dynamics accompanying sensory processing and sensorimotor transformations, and has spurred the development of innovative closed-loop behavioral paradigms in which stimulus-response relationships can be studied. More recently, microscopes have been developed that allow whole-brain calcium imaging in freely swimming and behaving larvae. In this review, we highlight the technologies underlying whole-brain functional imaging in zebrafish, provide examples of the sensory and motor processes that have been studied with this technique, and discuss the need to merge data from whole-brain functional imaging studies with neurochemical and anatomical information to develop holistic models of functional neural circuits.