Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 2731-2740 of 3920 results
03/15/16 | Practice makes perfect in memory recall.
Romani S, Katkov M, Tsodyks M
Learning & Memory (Cold Spring Harbor, N.Y.). 2016 Apr;23(4):169-73. doi: 10.1101/lm.041178.115

A large variability in performance is observed when participants recall briefly presented lists of words. The sources of such variability are not known. Our analysis of a large data set of free recall revealed a small fraction of participants that reached an extremely high performance, including many trials with the recall of complete lists. Moreover, some of them developed a number of consistent input-position-dependent recall strategies, in particular recalling words consecutively ("chaining") or in groups of consecutively presented words ("chunking"). The time course of acquisition and particular choice of positional grouping were variable among participants. Our results show that acquiring positional strategies plays a crucial role in improvement of recall performance.

View Publication Page
03/01/84 | Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA.
Chang DD, Clayton DA
Cell. 1984 Mar;36:635-43. doi: 10.1101/gad.1352105

The major site of in vivo transcriptional initiation for both heavy and light strands of human mitochondrial DNA is the displacement-loop region. Transcripts synthesized in vitro by human mitochondrial RNA polymerase were mapped to the nucleotide level and have identical 5’ end map positions to those reported for in vivo primary transcripts. An ordered series of deletion clones, whose template sequences were truncated at either the 5’ or 3’ end, was used to identify the precise mitochondrial DNA sequence required for initiation of transcription. The data provide a definitive assignment of the promoter for heavy-strand transcription occurring within -16 to +7 of the transcriptional start site 16 nucleotides upstream of the 5’ end of the gene for tRNAPhe and of the promoter for light-strand transcription occurring within -28 to +16 of the transcriptional start site at the 5’ end of "7S RNA." Within each control sequence is a candidate promoter whose consensus sequence is 5’-CANACC(G)CC(A)AAAGAPyA-3’ and in both cases transcriptional initiation occurs within six to eight nucleotides of the 3’ end of this sequence. The transcriptional start site is an integral part of each promoter and each promoter can function in the absence of the other.

View Publication Page
07/17/11 | Precise olfactory responses tile the sniff cycle.
Shusterman R, Smear MC, Koulakov AA, Rinberg D
Nature Neuroscience. 2011 Jul 17;14(8):1039-44. doi: 10.1038/nn.2877

In terrestrial vertebrates, sniffing controls odorant access to receptors, and therefore sets the timescale of olfactory stimuli. We found that odorants evoked precisely sniff-locked activity in mitral/tufted cells in the olfactory bulb of awake mouse. The trial-to-trial response jitter averaged 12 ms, a precision comparable to other sensory systems. Individual cells expressed odor-specific temporal patterns of activity and, across the population, onset times tiled the duration of the sniff cycle. Responses were more tightly time-locked to the sniff phase than to the time after inhalation onset. The spikes of single neurons carried sufficient information to discriminate odors. In addition, precise locking to sniff phase may facilitate ensemble coding by making synchrony relationships across neurons robust to variation in sniff rate. The temporal specificity of mitral/tufted cell output provides a potentially rich source of information for downstream olfactory areas.

View Publication Page
07/18/14 | Precise spatial coding is preserved along the longitudinal hippocampal axis.
Keinath AT, Wang ME, Wann EG, Yuan RK, Dudman JT, Muzzio IA
Hippocampus. 2014 Jul 18;24(12):1-16. doi: 10.1002/hipo.22333

Compared to the dorsal hippocampus, relatively few studies have characterized neuronal responses in the ventral hippocampus. In particular, it is unclear whether and how cells in the ventral region represent space and/or respond to contextual changes. We recorded from dorsal and ventral CA1 neurons in freely moving mice exposed to manipulations of visuospatial and olfactory contexts. We found that ventral cells respond to alterations of the visuospatial environment such as exposure to novel local cues, cue rotations, and contextual expansion in similar ways to dorsal cells, with the exception of cue rotations. Furthermore, we found that ventral cells responded to odors much more strongly than dorsal cells, particularly to odors of high valence. Similar to earlier studies recording from the ventral hippocampus in CA3, we also found increased scaling of place cell field size along the longitudinal hippocampal axis. Although the increase in place field size observed toward the ventral pole has previously been taken to suggest a decrease in spatial information coded by ventral place cells, we hypothesized that a change in spatial scaling could instead signal a shift in representational coding that preserves the resolution of spatial information. To explore this possibility, we examined population activity using principal component analysis (PCA) and neural location reconstruction techniques. Our results suggest that ventral populations encode a distributed representation of space, and that the resolution of spatial information at the population level is comparable to that of dorsal populations of similar size. Finally, through the use of neural network modeling, we suggest that the redundancy in spatial representation along the longitudinal hippocampal axis may allow the hippocampus to overcome the conflict between memory interference and generalization inherent in neural network memory. Our results suggest that ventral population activity is well suited for generalization across locations and contexts. © 2014 Wiley Periodicals, Inc.

View Publication Page
08/01/20 | Precision Calcium Imaging of Dense Neural Populations via a Cell-Body-Targeted Calcium Indicator.
Shemesh OA, Linghu C, Piatkevich KD, Goodwin D, Celiker OT, Gritton HJ, Romano MF, Gao R, Yu CJ, Tseng H, Bensussen S, Narayan S, Yang C, Freifeld L, Siciliano CA, Gupta I, Wang J, Pak N, Yoon Y, Ullmann JF, Guner-Ataman B, Noamany H, Sheinkopf ZR, Park WM, Asano S, Keating AE, Trimmer JS, Reimer J, Tolias AS, Bear MF, Tye KM, Han X, Ahrens MB, Boyden ES
Neuron. 2020 Aug 01;107(3):470. doi: 10.1016/j.neuron.2020.05.029

Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 μm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.

View Publication Page
01/12/21 | Precision Mapping of COVID-19 Vulnerable Locales by Epidemiological and Socioeconomic Risk Factors, Developed Using South Korean Data.
Weinstein B, da Silva AR, Kouzoukas DE, Bose T, Kim G, Correa PA, Pondugula S, Lee Y, Kim J, Carpenter DO
International Journal of Environmental Research and Public Health. 2021 Jan 12;18(2):. doi: 10.3390/ijerph18020604

COVID-19 has severely impacted socioeconomically disadvantaged populations. To support pandemic control strategies, geographically weighted negative binomial regression (GWNBR) mapped COVID-19 risk related to epidemiological and socioeconomic risk factors using South Korean incidence data (January 20, 2020 to July 1, 2020). We constructed COVID-19-specific socioeconomic and epidemiological themes using established social theoretical frameworks and created composite indexes through principal component analysis. The risk of COVID-19 increased with higher area morbidity, risky health behaviours, crowding, and population mobility, and with lower social distancing, healthcare access, and education. Falling COVID-19 risks and spatial shifts over three consecutive time periods reflected effective public health interventions. This study provides a globally replicable methodological framework and precision mapping for COVID-19 and future pandemics.

View Publication Page
01/11/24 | Prediction of Cellular Identities from Trajectory and Cell Fate Information
Baiyang Dai , Jiamin Yang , Hari Shroff , Patrick La Riviere
arXiv. 2024 Jan 11:. doi: 10.48550/arXiv.2401.06182

Determining cell identities in imaging sequences is an important yet challenging task. The conventional method for cell identification is via cell tracking, which is complex and can be time-consuming. In this study, we propose an innovative approach to cell identification during early C. elegans embryogenesis using machine learning. We employed random forest, MLP, and LSTM models, and tested cell classification accuracy on 3D time-lapse confocal datasets spanning the first 4 hours of embryogenesis. By leveraging a small number of spatial-temporal features of individual cells, including cell trajectory and cell fate information, our models achieve an accuracy of over 90%, even with limited data. We also determine the most important feature contributions and can interpret these features in the context of biological knowledge. Our research demonstrates the success of predicting cell identities in 4D imaging sequences directly from simple spatio-temporal features.

View Publication Page
Svoboda Lab
05/15/19 | Prediction of choice from competing mechanosensory and choice-memory cues during active tactile decision making.
Campagner D, Evans MH, Chlebikova K, Colins-Rodriguez A, Loft MS, Fox S, Pettifer D, Humphries MD, Svoboda K, Petersen RS
The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2019 May 15;39(20):3921-33. doi: 10.1523/JNEUROSCI.2217-18.2019

Perceptual decision making is an active process where animals move their sense organs to extract task-relevant information. To investigate how the brain translates sensory input into decisions during active sensation, we developed a mouse active touch task where the mechanosensory input can be precisely measured and that challenges animals to use multiple mechanosensory cues. Male mice were trained to localise a pole using a single whisker and to report their decision by selecting one of three choices. Using high-speed imaging and machine vision we estimated whisker-object mechanical forces at millisecond resolution. Mice solved the task by a sensory-motor strategy where both the strength and direction of whisker bending were informative cues to pole location. We found competing influences of immediate sensory input and choice memory on mouse choice. On correct trials, choice could be predicted from the direction and strength of whisker bending, but not from previous choice. In contrast, on error trials, choice could be predicted from previous choice but not from whisker bending. This study shows that animal choices during active tactile decision making can be predicted from mechanosenory and choice-memory signals; and provides a new task, well-suited for future study of the neural basis of active perceptual decisions.Due to the difficulty of measuring the sensory input to moving sense organs, active perceptual decision making remains poorly understood. The whisker system provides a way forward since it is now possible to measure the mechanical forces due to whisker-object contact during behaviour. Here we train mice in a novel behavioural task that challenges them to use rich mechanosensory cues, but can be performed using one whisker and enables task-relevant mechanical forces to be precisely estimated. This approach enables rigorous study of how sensory cues translate into action during active, perceptual decision making. Our findings provide new insight into active touch and how sensory/internal signals interact to determine behavioural choices.

View Publication Page
Svoboda Lab
04/12/23 | Predictive and robust gene selection for spatial transcriptomics.
Covert I, Gala R, Wang T, Svoboda K, Sümbül U, Lee S
Nature Communications. 2023 Apr 12;14(1):2091. doi: 10.1038/s41467-023-37392-1

A prominent trend in single-cell transcriptomics is providing spatial context alongside a characterization of each cell's molecular state. This typically requires targeting an a priori selection of genes, often covering less than 1% of the genome, and a key question is how to optimally determine the small gene panel. We address this challenge by introducing a flexible deep learning framework, PERSIST, to identify informative gene targets for spatial transcriptomics studies by leveraging reference scRNA-seq data. Using datasets spanning different brain regions, species, and scRNA-seq technologies, we show that PERSIST reliably identifies panels that provide more accurate prediction of the genome-wide expression profile, thereby capturing more information with fewer genes. PERSIST can be adapted to specific biological goals, and we demonstrate that PERSIST's binarization of gene expression levels enables models trained on scRNA-seq data to generalize with to spatial transcriptomics data, despite the complex shift between these technologies.

View Publication Page
10/03/17 | Predictive Coding of Novel versus Familiar Stimuli in the Primary Visual Cortex
Homann J, Koay SA, Glidden AM, Tank DW, Berry MJ
bioRxiv. 10/2017:. doi: 10.1101/197608

To explore theories of predictive coding, we presented mice with repeated sequences of images with novel images sparsely substituted. Under these conditions, mice could be rapidly trained to lick in response to a novel image, demonstrating a high level of performance on the first day of testing. Using 2-photon calcium imaging to record from layer 2/3 neurons in the primary visual cortex, we found that novel images evoked excess activity in the majority of neurons. When a new stimulus sequence was repeatedly presented, a majority of neurons had similarly elevated activity for the first few presentations, which then decayed to almost zero activity. The decay time of these transient responses was not fixed, but instead scaled with the length of the stimulus sequence. However, at the same time, we also found a small fraction of the neurons within the population (\~2%) that continued to respond strongly and periodically to the repeated stimulus. Decoding analysis demonstrated that both the transient and sustained responses encoded information about stimulus identity. We conclude that the layer 2/3 population uses a two-channel predictive code: a dense transient code for novel stimuli and a sparse sustained code for familiar stimuli. These results extend and unify existing theories about the nature of predictive neural codes.

View Publication Page