Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 3171-3180 of 3920 results
03/07/98 | Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata.
Lübke J, Frotscher M, Spruston N
J Neurophysiol. 1998 Mar;79(3):1518-34

Because of their strategic position between the granule cell and pyramidal cell layers, neurons of the hilar region of the hippocampal formation are likely to play an important role in the information processing between the entorhinal cortex and the hippocampus proper. Here we present an electrophysiological characterization of anatomically identified neurons in the fascia dentata as studied using patch-pipette recordings and subsequent biocytin-staining of neurons in slices. The resting potential, input resistance (RN), membrane time constant (taum), "sag" in hyperpolarizing responses, maximum firing rate during a 1-s current pulse, spike width, and fast and slow afterhyperpolarizations (AHPs) were determined for several different types of hilar neurons. Basket cells had a dense axonal plexus almost exclusively within the granule cell layer and were distinguishable by their low RN, short taum, lack of sag, and rapid firing rates. Dentate granule cells also lacked sag and were identifiable by their higher RN, longer taum, and lower firing rates than basket cells. Mossy cells had extensive axon collaterals within the hilus and a few long-range collaterals to the inner molecular layer and CA3c and were characterized physiologically by small fast and slow AHPs. Spiny and aspiny hilar interneurons projected primarily either to the inner or outer segment of the molecular layer and had a dense intrahilar axonal plexus, terminating onto somata within the hilus and CA3c. Physiologically, spiny hilar interneurons generally had higher RN values than mossy cells and a smaller slow AHP than aspiny interneurons. The specialized physiological properties of different classes of hilar neurons are likely to be important determinants of their functional operation within the hippocampal circuitry.

View Publication Page
06/20/07 | Specific Drosophila Dscam juxtamembrane variants control dendritic elaboration and axonal arborization.
Shi L, Yu H, Yang JS, Lee T
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2007 Jun 20;27(25):6723-8. doi: 10.1523/JNEUROSCI.1517-07.2007

Drosophila Dscam isoforms are derived from two alternative transmembrane/juxtamembrane domains (TMs) in addition to thousands of ectodomain variants. Using a microRNA-based RNA interference technology, we selectively knocked down different subsets of Dscams containing either the exon 17.1- or exon 17.2-encoding TM. Eliminating Dscam[TM1] reduced Dscam expression but minimally affected postembryonic axonal morphogenesis. In contrast, depleting Dscam[TM2] blocked axon arborization. Further removal of Dscam[TM1] enhanced the loss-of-Dscam[TM2] axonal phenotypes. However, Dscam[TM1] primarily regulates dendritic development, as evidenced by the observations that removing Dscam[TM1] alone impeded elaboration of dendrites and that transgenic Dscam[TM1], but not Dscam[TM2], effectively rescued Dscam mutant dendritic phenotypes in mosaic organisms. These distinct Dscam functions can be attributed to the juxtamembrane regions of TMs that govern dendritic versus axonal targeting of Dscam as well. Together, we suggest that specific Drosophila Dscam juxtamembrane variants control dendritic elaboration and axonal arborization.

View Publication Page
Singer Lab
03/01/15 | Specific interaction of KIF11 with ZBP1 regulates the transport of β-actin mRNA and cell motility.
Song T, Zheng Y, Wang Y, Katz Z, Liu X, Chen S, Singer RH, Gu W
Journal of Cell Science. 2015 Mar 1;128(5):1001-10. doi: 10.1242/jcs.161679

ZBP1-modulated localization of β-actin mRNA enables a cell to establish polarity and structural asymmetry. Although the mechanism of β-actin mRNA localization has been well established, the underlying mechanism of how a specific molecular motor contributes to the transport of the ZBP1 (also known as IGF2BP1) complex in non-neuronal cells remains elusive. In this study, we report the isolation and identification of KIF11, a microtubule motor, which physically interacts with ZBP1 and is a component of β-actin messenger ribonucleoprotein particles (mRNPs). We show that KIF11 colocalizes with the β-actin mRNA, and the ability of KIF11 to transport β-actin mRNA is dependent on ZBP1. We characterize the corresponding regions of ZBP1 and KIF11 that mediate the interaction of the two proteins in vitro and in vivo. Disruption of the in vivo interaction of KIF11 with ZBP1 delocalizes β-actin mRNA and affects cell migration. Our study reveals a molecular mechanism by which a particular microtubule motor mediates the transport of an mRNP through direct interaction with an mRNA-binding protein.

View Publication Page
09/12/18 | Speed dependent descending control of freezing behavior in Drosophila melanogaster.
Zacarias R, Namiki S, Card GM, Vasconcelos ML, Moita MA
Nature Communications. 2018 Sep 12;9(1):3697. doi: 10.1038/s41467-018-05875-1

The most fundamental choice an animal has to make when it detects a threat is whether to freeze, reducing its chances of being noticed, or to flee to safety. Here we show that Drosophila melanogaster exposed to looming stimuli in a confined arena either freeze or flee. The probability of freezing versus fleeing is modulated by the fly's walking speed at the time of threat, demonstrating that freeze/flee decisions depend on behavioral state. We describe a pair of descending neurons crucially implicated in freezing. Genetic silencing of DNp09 descending neurons disrupts freezing yet does not prevent fleeing. Optogenetic activation of both DNp09 neurons induces running and freezing in a state-dependent manner. Our findings establish walking speed as a key factor in defensive response choices and reveal a pair of descending neurons as a critical component in the circuitry mediating selection and execution of freezing or fleeing behaviors.

View Publication Page
08/03/06 | Speed-accuracy tradeoff in olfaction.
Rinberg D, Koulakov A, Gelperin A
Neuron. 2006 Aug 3;51(3):351-8. doi: 10.1523/JNEUROSCI.3613-08.2008

The basic psychophysical principle of speed-accuracy tradeoff (SAT) has been used to understand key aspects of neuronal information processing in vision and audition, but the principle of SAT is still debated in olfaction. In this study we present the direct observation of SAT in olfaction. We developed a behavioral paradigm for mice in which both the duration of odorant sampling and the difficulty of the odor discrimination task were controlled by the experimenter. We observed that the accuracy of odor discrimination increases with the duration of imposed odorant sampling, and that the rate of this increase is slower for harder tasks. We also present a unifying picture of two previous, seemingly disparate experiments on timing of odorant sampling in odor discrimination tasks. The presence of SAT in olfaction provides strong evidence for temporal integration in olfaction and puts a constraint on models of olfactory processing.

View Publication Page
06/09/03 | Spike sorting in the frequency domain with overlap detection.
Rinberg D, Bialek W, Davidowitz H, Tishby N

This paper deals with the problem of extracting the activity of individual neurons from multi-electrode recordings. Important aspects of this work are: 1) the sorting is done in two stages - a statistical model of the spikes from different cells is built and only then are occurrences of these spikes in the data detected by scanning through the original data, 2) the spike sorting is done in the frequency domain, 3) strict statistical tests are applied to determine if and how a spike should be classiffed, 4) the statistical model for detecting overlaping spike events is proposed, 5) slow dynamics of spike shapes are tracked during long experiments. Results from the application of these techniques to data collected from the escape response system of the American cockroach, Periplaneta americana, are presented.

View Publication Page
04/08/24 | Spike sorting with Kilosort4
Pachitariu M, Sridhar S, Pennington J, Stringer C
Nat Methods. 2024 Apr 08:. doi: 10.1038/s41592-024-02232-7

Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, made complicated by the nonstationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To address the spike-sorting problem, we have been openly developing the Kilosort framework. Here we describe the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a version with substantially improved performance due to clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework that uses densely sampled electrical fields from real experiments to generate nonstationary spike waveforms and realistic noise. We found that nearly all versions of Kilosort outperformed other algorithms on a variety of simulated conditions and that Kilosort4 performed best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.

View Publication Page
08/19/13 | Spinal projection neurons control turning behaviors in zebrafish.
Huang K, Ahrens MB, Dunn TW, Engert F
Current Biology. 2013 Aug 19;23(16):1566-73. doi: 10.1016/j.cub.2013.06.044

Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1-9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs.

View Publication Page
Sternson Lab
02/28/01 | Split--pool synthesis of 1,3-dioxanes leading to arrayed stock solutions of single compounds sufficient for multiple phenotypic and protein-binding assays.
Sternson SM, Louca JB, Wong JC, Schreiber SL
Journal of the American Chemical Society. 2001 Feb 28;123(8):1740-7

Diversity-oriented organic synthesis offers the promise of advancing chemical genetics, where small molecules are used to explore biology. While the split--pool synthetic method is theoretically the most effective approach for the production of large collections of small molecules, it has not been widely adopted due to numerous technical and analytical hurdles. We have developed a split--pool synthesis leading to an array of stock solutions of single 1,3-dioxanes. The quantities of compounds are sufficient for hundreds of phenotypic and protein-binding assays. The average concentration of these stock solutions derived from a single synthesis bead was determined to be 5.4 mM in 5 microL of DMSO. A mass spectrometric strategy to identify the structure of molecules from a split--pool synthesis was shown to be highly accurate. Individual members of the 1,3-dioxane library have activity in a variety of phenotypic and protein-binding assays. The procedure developed in this study allows many assays to be performed with compounds derived from individual synthesis beads. The synthetic compounds identified in these assays should serve as useful probes of cellular and organismal processes.

View Publication Page
03/12/19 | Split-QF system for fine-tuned transgene expression in Drosophila.
Riabinina O, Vernon SW, Dickson BJ, Baines RA
Genetics. 2019 Mar 12;212(1):53-63. doi: 10.1534/genetics.119.302034

The Q-system is a binary expression system that works well across species. Here we report the development and demonstrate applications of a split-QF system that drives strong expression in , is repressible by QS and inducible by a small non-toxic molecule quinic acid. The split-QF system is fully compatible with existing split-GAL4 and split-LexA lines, thus greatly expanding the range of possible advanced intersectional experiments and anatomical, physiological and behavioural assays in and in other organisms.

View Publication Page