Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 3361-3370 of 3920 results
Tjian Lab
08/15/06 | TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter.
Wright KJ, Marr MT, Tjian R
Proceedings of the National Academy of Sciences of the United States of America. 2006 Aug 15;103(33):12347-52. doi: 10.1073/pnas.1100640108

Activator-dependent recruitment of TFIID initiates formation of the transcriptional preinitiation complex. TFIID binds core promoter DNA elements and directs the assembly of other general transcription factors, leading to binding of RNA polymerase II and activation of RNA synthesis. How TATA box-binding protein (TBP) and the TBP-associated factors (TAFs) are assembled into a functional TFIID complex with promoter recognition and coactivator activities in vivo remains unknown. Here, we use RNAi to knock down specific TFIID subunits in Drosophila tissue culture cells to determine which subunits are most critical for maintaining stability of TFIID in vivo. Contrary to expectations, we find that TAF4 rather than TBP or TAF1 plays the most critical role in maintaining stability of the complex. Our analysis also indicates that TAF5, TAF6, TAF9, and TAF12 play key roles in stability of the complex, whereas TBP, TAF1, TAF2, and TAF11 contribute very little to complex stability. Based on our results, we propose that holo-TFIID comprises a stable core subcomplex containing TAF4, TAF5, TAF6, TAF9, and TAF12 decorated with peripheral subunits TAF1, TAF2, TAF11, and TBP. Our initial functional studies indicate a specific and significant role for TAF1 and TAF4 in mediating transcription from a TATA-less, downstream core promoter element (DPE)-containing promoter, whereas a TATA-containing, DPE-less promoter was far less dependent on these subunits. In contrast to both TAF1 and TAF4, RNAi knockdown of TAF5 had little effect on transcription from either class of promoter. These studies significantly alter previous models for the assembly, structure, and function of TFIID.

View Publication Page
02/02/16 | Tagmentation-based mapping (tagmap) of mobile DNA genomic insertion sites.
bioRxiv. 2016 Feb 2:. doi: 10.1101/037762

Multiple methods have been introduced over the past 30 years to identify the genomic insertion sites of transposable elements and other DNA elements that integrate into genomes. However, each of these methods suffer from limitations that can frustrate attempts to map multiple insertions in a single genome and to map insertions in genomes of high complexity that contain extensive repetitive DNA. I introduce a new method for transposon mapping that is simple to perform, can accurately map multiple insertions per genome, and generates long sequence reads that facilitate mapping to complex genomes. The method, called TagMap, for Tagmentation-based Mapping, relies on a modified Tn5 tagmentation protocol with a single tagmentation adaptor followed by PCR using primers specific to the tranposable element and the adaptor sequence. Several minor modifications to normal tagmentation reagents and protocols allow easy and rapid preparation of TagMap libraries. Short read sequencing starting from the adaptor sequence generates oriented reads that flank and are oriented toward the transposable element insertion site. The convergent orientation of adjacent reads at the insertion site allows straightforward prediction of the precise insertion site(s). A Linux shell script is provided to identify insertion sites from fastq files.

View Publication Page
Gonen Lab
06/22/17 | Taking the measure of MicroED.
Rodriguez JA, Eisenberg DS, Gonen T
Current Opinion in Structural Biology. 2017 Jun 22;46:79-86. doi: 10.1016/j.sbi.2017.06.004

It is now possible to routinely determine atomic resolution structures by electron cryo-microscopy (cryoEM), facilitated in part by the method known as micro electron-diffraction (MicroED). Since its initial demonstration in 2013, MicroED has helped determine a variety of protein structures ranging in molecular weight from a few hundred Daltons to several hundred thousand Daltons. Some of these structures were novel while others were previously known. The resolutions of structures obtained thus far by MicroED range from 3.2Å to 1.0Å, with most better than 2.5Å. Crystals of various sizes and shapes, with different space group symmetries, and with a range of solvent content have all been studied by MicroED. The wide range of crystals explored to date presents the community with a landscape of opportunity for structure determination from nano crystals. Here we summarize the lessons we have learned during the first few years of MicroED, and from our attempts at the first ab initio structure determined by the method. We re-evaluate theoretical considerations in choosing the appropriate crystals for MicroED and for extracting the most meaning out of measured data. With more laboratories worldwide adopting the technique, we speculate what the first decade might hold for MicroED.

View Publication Page
06/30/13 | TALE-mediated modulation of transcriptional enhancers in vivo.
Crocker J, Stern DL
Nature Methods. 2013 Jun 30;10(8):762-7. doi: 10.1038/nmeth.2543

We tested whether transcription activator-like effectors (TALEs) could mediate repression and activation of endogenous enhancers in the Drosophila genome. TALE repressors (TALERs) targeting each of the five even-skipped (eve) stripe enhancers generated repression specifically of the focal stripes. TALE activators (TALEAs) targeting the eve promoter or enhancers caused increased expression primarily in cells normally activated by the promoter or targeted enhancer, respectively. This effect supports the view that repression acts in a dominant fashion on transcriptional activators and that the activity state of an enhancer influences TALE binding or the ability of the VP16 domain to enhance transcription. In these assays, the Hairy repression domain did not exhibit previously described long-range transcriptional repression activity. The phenotypic effects of TALER and TALEA expression in larvae and adults are consistent with the observed modulations of eve expression. TALEs thus provide a novel tool for detection and functional modulation of transcriptional enhancers in their native genomic context.

View Publication Page
06/24/12 | Tandem fluorescent protein timers for in vivo analysis of protein dynamics.
Khmelinskii A, Keller PJ, Bartosik A, Meurer M, Barry JD, Mardin BR, Kaufmann A, Trautmann S, Wachsmuth M, Pereira G, Huber W, Schiebel E, Knop M
Nature Biotechnology. 2012 Jun 24;30(7):708-14. doi: 10.1038/nbt.2281

The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein timers (tFTs), fusions of two single-color fluorescent proteins that mature with different kinetics, which we use to analyze protein turnover and mobility in living cells. We fuse tFTs to proteins in yeast to study the longevity, segregation and inheritance of cellular components and the mobility of proteins between subcellular compartments; to measure protein degradation kinetics without the need for time-course measurements; and to conduct high-throughput screens for regulators of protein turnover. Our experiments reveal the stable nature and asymmetric inheritance of nuclear pore complexes and identify regulators of N-end rule–mediated protein degradation.

View Publication Page
09/01/11 | Tao kinases as coordinators of actin and microtubule dynamics in developing neurons.
King I, Heberlein U
Communicative & Integrative Biology. 2011 Sep;4(5):554-6. doi: 10.4161/cib.4.5.16051

Drosophila tao, encoding a Ste20 family kinase, was identified as a gene involved in ethanol, cocaine and nicotine sensitivity. The behavioral phenotypes appear to be caused by defects in the development of the adult brain. Specifically, Drosophila tao functions to promote axon guidance of mushroom body (MB) neurons. The MB is a large structure in the central brain of the fly whose development and function have been well characterized. tao interacts genetically with mutations in the par-1 gene, also encoding a serine-threonine kinase. Since Par-1 has been implicated in the regulation of microtubule dynamics, this suggests that tao regulates the microtubule cytoskeleton in developing MB neurons. Here we discuss these results in light of previous studies that have proposed that Drosophila tao and its mammalian homologs function as a link between the actin and microtubule cytoskeletons, regulating microtubule stability in response to actin signals.

View Publication Page
02/01/13 | Taok2 controls behavioral response to ethanol in mice.
Kapfhamer D, Taylor S, Zou ME, Lim JP, Kharazia V, Heberlein U
Genes, Brain, and Behavior. 2013 Feb;12(1):87-97. doi: 10.1111/j.1601-183X.2012.00834.x

Despite recent advances in the understanding of ethanol's biological action, many of the molecular targets of ethanol and mechanisms behind ethanol's effect on behavior remain poorly understood. In an effort to identify novel genes, the products of which regulate behavioral responses to ethanol, we recently identified a mutation in the dtao gene that confers resistance to the locomotor stimulating effect of ethanol in Drosophila. dtao encodes a member of the Ste20 family of serine/threonine kinases implicated in MAP kinase signaling pathways. In this study, we report that conditional ablation of the mouse dtao homolog, Taok2, constitutively and specifically in the nervous system, results in strain-specific and overlapping alterations in ethanol-dependent behaviors. These data suggest a functional conservation of dtao and Taok2 in mediating ethanol's biological action and identify Taok2 as a putative candidate gene for ethanol use disorders in humans.

View Publication Page
Svoboda Lab
11/19/13 | Tapered whiskers are required for active tactile sensation.
Hires SA, Pammer L, Svoboda K, Golomb D
eLife. 2013 Nov 19;2:e01350. doi: 10.7554/eLife.01350

Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001.

View Publication Page
04/01/12 | Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
Kim Y, Spruston N
Hippocampus. 2012 Apr;22(4):693-706. doi: 10.1002/hipo.20931

Pyramidal neurons in the subiculum project to a variety of cortical and subcortical areas in the brain to convey information processed in the hippocampus. Previous studies have shown that two groups of subicular pyramidal neurons–regular-spiking and bursting neurons–are distributed in an organized fashion along the proximal-distal axis, with more regular-spiking neurons close to CA1 (proximal) and more bursting neurons close to presubiculum (distal). Anatomically, neurons projecting to some targets are located more proximally along this axis, while others are located more distally. However, the relationship between the firing properties and the targets of subicular pyramidal neurons is not known. To study this relationship, we used in vivo injections of retrogradely transported fluorescent beads into each of nine different regions and conducted whole-cell current-clamp recordings from the bead-containing subicular neurons in acute brain slices. We found that subicular projections to each area were composed of a mixture of regular-spiking and bursting neurons. Neurons projecting to amygdala, lateral entorhinal cortex, nucleus accumbens, and medial/ventral orbitofrontal cortex were located primarily in the proximal subiculum and consisted mostly of regular-spiking neurons (\~{}80%). By contrast, neurons projecting to medial EC, presubiculum, retrosplenial cortex, and ventromedial hypothalamus were located primarily in the distal subiculum and consisted mostly of bursting neurons (\~{}80%). Neurons projecting to a thalamic nucleus were located in the middle portion of subiculum, and their probability of bursting was close to 50%. Thus, the fraction of bursting neurons projecting to each target region was consistent with the known distribution of regular-spiking and bursting neurons along the proximal-distal axis of the subiculum. Variation in the distribution of regular-spiking and bursting neurons suggests that different types of information are conveyed from the subiculum to its various targets.

View Publication Page
07/26/17 | Targeted manipulation of neuronal activity in behaving adult flies.
Hampel S, Seeds AM
Decoding Neural Circuit Structure and Function. 2016 Aug 15:191-222. doi: 10.1007/978-3-319-57363-2_7

The ability to control the activity of specific neurons in freely behaving animals provides an effective way to probe the contributions of neural circuits to behavior. Wide interest in studying principles of neural circuit function using the fruit fly Drosophila melanogaster has fueled the construction of an extensive transgenic toolkit for performing such neural manipulations. Here we describe approaches for using these tools to manipulate the activity of specific neurons and assess how those manipulations impact the behavior of flies. We also describe methods for examining connectivity among multiple neurons that together form a neural circuit controlling a specific behavior. This work provides a resource for researchers interested in examining how neurons and neural circuits contribute to the rich repertoire of behaviors performed by flies.

View Publication Page