Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1451-1460 of 3920 results
Cui Lab
08/01/12 | Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation.
Si K, Fiolka R, Cui M
Nature Photonics. 2012 Aug;6:657. doi: doi:10.1038/nphoton.2012.205

Fluorescence imaging has revolutionized biomedical research over the past three decades. Its high molecular specificity and unrivalled single-molecule-level sensitivity have enabled breakthroughs in a number of research fields. For in vivo applications its major limitation is its superficial imaging depth, a result of random scattering in biological tissues causing exponential attenuation of the ballistic component of a light wave. Here, we present fluorescence imaging beyond the ballistic regime by combining single-cycle pulsed ultrasound modulation and digital optical phase conjugation. We demonstrate a near-isotropic three-dimensional localized sound–light interaction zone. With the exceptionally high optical gain provided by the digital optical phase conjugation system, we can deliver sufficient optical power to a focus inside highly scattering media for not only fluorescence imaging but also a variety of linear and nonlinear spectroscopy measurements. This technology paves the way for many important applications in both fundamental biology research and clinical studies.

View Publication Page
Looger Lab
11/20/22 | Fluorescence Screens for Identifying Central Nervous System-Acting Drug-Biosensor Pairs for Subcellular and Supracellular Pharmacokinetics.
Beatty ZG, Muthusamy AK, Unger EK, Dougherty DA, Tian L, Looger LL, Shivange AV, Bera K, Lester HA, Nichols AL
Bio-Protocol. 2022 Nov 20;12(22):. doi: 10.21769/BioProtoc.4551

Subcellular pharmacokinetic measurements have informed the study of central nervous system (CNS)-acting drug mechanisms. Recent investigations have been enhanced by the use of genetically encoded fluorescent biosensors for drugs of interest at the plasma membrane and in organelles. We describe screening and validation protocols for identifying hit pairs comprising a drug and biosensor, with each screen including 13-18 candidate biosensors and 44-84 candidate drugs. After a favorable hit pair is identified and validated via these protocols, the biosensor is then optimized, as described in other papers, for sensitivity and selectivity to the drug. We also show sample hit pair data that may lead to future intensity-based drug-sensing fluorescent reporters (iDrugSnFRs). These protocols will assist scientists to use fluorescence responses as criteria in identifying favorable fluorescent biosensor variants for CNS-acting drugs that presently have no corresponding biosensor partner. eLife (2022), DOI: 10.7554/eLife.74648 Graphical abstract.

View Publication Page
01/15/22 | Fluorescent chemigenetic actuators and indicators for use in living animals.
Farrants H, Tebo AG
Current Opinion in Pharmacology. 2022 Jan 15;62:159-167. doi: 10.1016/j.coph.2021.12.007

Fluorescent indicators and actuators provide a means to optically observe and perturb dynamic events in living animals. Although chemistry and protein engineering have contributed many useful tools to observe and perturb cells, an emerging strategy is to use chemigenetics: systems in which a small molecule dye interacts with a genetically encoded protein domain. Here we review chemigenetic strategies that have been successfully employed in living animals as photosensitizers for photoablation experiments, fluorescent cell cycle indicators, and fluorescent indicators for studying dynamic biological signals. Although these strategies at times suffer from challenges, e.g. delivery of the small molecule and assembly of the chemigenetic unit in living animals, the advantages of using small molecules with high brightness, low photobleaching, no chromophore maturation time and expanded color palette, combined with the ability to genetically target them to specific cell types, make chemigenetic fluorescent actuators and indicators an attractive strategy for use in living animals.

View Publication Page
10/07/09 | Fluorogenic affinity label for the facile, rapid imaging of proteins in live cells.
Watkins RW, Lavis LD, Kung VM, Los GV, Raines RT
Organic & Biomolecular Chemistry. 2009 Oct 7;7(19):3969-75. doi: 10.1039/b907664f

Haloalkane dehalogenase (HD) catalyzes the hydrolysis of haloalkanes via a covalent enzyme-substrate intermediate. Fusing a target protein to an HD variant that cannot hydrolyze the intermediate enables labeling of the target protein with a haloalkane in cellulo. The utility of extant probes is hampered, however, by background fluorescence as well as limited membrane permeability. Here, we report on the synthesis and use of a fluorogenic affinity label that, after unmasking by an intracellular esterase, labels an HD variant in cellulo. Labeling is rapid and specific, as expected from the reliance upon enzymic catalysts and the high membrane permeance of the probe both before and after unmasking. Most notably, even high concentrations of the fluorogenic affinity label cause minimal background fluorescence without a need to wash the cells. We envision that such fluorogenic affinity labels, which enlist catalysis by two cellular enzymes, will find utility in pulse-chase experiments, high-content screening, and numerous other protocols.

View Publication Page
05/23/06 | Fluorogenic label for biomolecular imaging.
Lavis LD, Chao T, Raines RT
ACS Chemical Biology. 2006 May 23;1(4):252-60. doi: 10.1021/cb600132m

Traditional small-molecule fluorophores are always fluorescent. This attribute can obscure valuable information in biological experiments. Here, we report on a versatile "latent" fluorophore that overcomes this limitation. At the core of the latent fluorophore is a derivative of rhodamine in which one nitrogen is modified as a urea. That modification enables rhodamine to retain half of its fluorescence while facilitating conjugation to a target molecule. The other nitrogen of rhodamine is modified with a "trimethyl lock", which enables fluorescence to be unmasked fully by a single user-designated chemical reaction. An esterase-reactive latent fluorophore was synthesized in high yield and attached covalently to a cationic protein. The resulting conjugate was not fluorescent in the absence of esterases. The enzymatic activity of esterases in endocytic vesicles and the cytosol educed fluorescence, enabling the time-lapse imaging of endocytosis into live human cells and thus providing unprecedented spatiotemporal resolution of this process. The modular design of this "fluorogenic label" enables the facile synthesis of an ensemble of small-molecule probes for the illumination of numerous biochemical and cell biological processes.

View Publication Page
07/09/17 | Fluorogenic Labeling Strategies for Biological Imaging
Li C, Tebo AG, Gautier A
International Journal of Molecular Sciences. 07/2017;18:1473 – 11. doi: 10.3390/ijms18071473

The spatiotemporal fluorescence imaging of biological processes requires effective tools to label intracellular biomolecules in living systems. This review presents a brief overview of recent labeling strategies that permits one to make protein and RNA strongly fluorescent using synthetic fluorogenic probes. Genetically encoded tags selectively binding the exogenously applied molecules ensure high labeling selectivity, while high imaging contrast is achieved using fluorogenic chromophores that are fluorescent only when bound to their cognate tag, and are otherwise dark. Beyond avoiding the need for removal of unbound synthetic dyes, these approaches allow the development of sophisticated imaging assays, and open exciting prospects for advanced imaging, particularly for multiplexed imaging and super-resolution microscopy.

View Publication Page
08/28/18 | Fluorogenic Protein‐Based Strategies for Detection, Actuation, and Sensing
Gautier A, Tebo AG
BioEssays. 08/2018;40:1800118. doi: 10.1002/bies.201800118

Fluorescence imaging has become an indispensable tool in cell and molecular biology. GFP‐like fluorescent proteins have revolutionized fluorescence microscopy, giving experimenters exquisite control over the localization and specificity of tagged constructs. However, these systems present certain drawbacks and as such, alternative systems based on a fluorogenic interaction between a chromophore and a protein have been developed. While these systems are initially designed as fluorescent labels, they also present new opportunities for the development of novel labeling and detection strategies. This review focuses on new labeling protocols, actuation methods, and biosensors based on fluorogenic protein systems. This review presents recently developed fluorogenic protein‐based systems made of a protein tag incorporating an external chromophore. Beyond addressing some limitations of classical fluorescent proteins, these unique systems present characteristics than can be used to creatively push the limits of biological imaging, in particular for the development of new labeling protocols, actuation methods and biosensors.

View Publication Page
07/13/18 | Fluorogenic structure activity library pinpoints molecular variations in substrate specificity of structurally homologous esterases.
White A, Koelper A, Russell A, Larsen EM, Kim C, Lavis LD, Hoops GC, Johnson RJ
The Journal of Biological Chemistry. 2018 Jul 13;293(36):13851-62. doi: 10.1074/jbc.RA118.003972

Cellular esterases catalyze many essential biological functions by performing hydrolysis reactions on diverse substrates. The promiscuity of esterases complicates assignment of their substrate preferences and biological functions. To identify universal factors controlling esterase substrate recognition, we designed a 32-member structure-activity relationship (SAR) library of fluorogenic ester substrates and used this library to systematically interrogate esterase preference for chain length, branching patterns, and polarity to differentiate common classes of esterase substrates. Two structurally homologous bacterial esterases were screened against this library, refining their previously broad overlapping substrate specificity. esterase ybfF displayed a preference for γ-position thioethers and ethers, whereas Rv0045c from displayed a preference for branched substrates with and without thioethers. We determined that this substrate differentiation was partially controlled by individual substrate selectivity residues Tyr119 in ybfF and His187 in Rv0045c; reciprocal substitution of these residues shifted each esterase's substrate preference. This work demonstrates that the selectivity of esterases is tuned based on transition state stabilization, identifies thioethers as an underutilized functional group for esterase substrates, and provides a rapid method for differentiating structural isozymes. This SAR library could have multi-faceted future applications including in vivo imaging, biocatalyst screening, molecular fingerprinting, and inhibitor design.

View Publication Page
03/04/22 | Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly.
Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, Saelens W, David FP, Brbić M, Spanier K, Leskovec J, McLaughlin CN, Xie Q, Jones RC, Brueckner K, Shim J, Tattikota SG, Schnorrer F, Rust K, Nystul TG, Carvalho-Santos Z, Ribeiro C, Pal S, Mahadevaraju S, Przytycka TM, Allen AM, Goodwin SF, Berry CW, Fuller MT, White-Cooper H, Matunis EL, DiNardo S, Galenza A, O'Brien LE, Dow JA, FCA Consortium§ , Jasper H, Oliver B, Perrimon N, Deplancke B, Quake SR, Luo L, Aerts S, Agarwal D, Ahmed-Braimah Y, Arbeitman M, Ariss MM, Augsburger J, Ayush K, Baker CC, Banisch T, Birker K, Bodmer R, Bolival B, Brantley SE, Brill JA, Brown NC, Buehner NA, Cai XT, Cardoso-Figueiredo R, Casares F, Chang A, Clandinin TR, Crasta S, Desplan C, Detweiler AM, Dhakan DB, Donà E, Engert S, Floc'hlay S, George N, González-Segarra AJ, Groves AK, Gumbin S, Guo Y, Harris DE, Heifetz Y, Holtz SL, Horns F, Hudry B, Hung R, Jan YN, Jaszczak JS, Jefferis GS, Karkanias J, Karr TL, Katheder NS, Kezos J, Kim AA, Kim SK, Kockel L, Konstantinides N, Kornberg TB, Krause HM, Labott AT, Laturney M, Lehmann R, Leinwand S, Li J, Li JS, Li K, Li K, Li L, Li T, Litovchenko M, Liu H, Liu Y, Lu T, Manning J, Mase A, Matera-Vatnick M, Matias NR, McDonough-Goldstein CE, McGeever A, McLachlan AD, Moreno-Roman P, Neff N, Neville M, Ngo S, Nielsen T, O'Brien CE, Osumi-Sutherland D, Ozel MN, Papatheodorou I, Petkovic M, Pilgrim C, Pisco AO, Reisenman C, Sanders EN, Dos Santos G, Scott K, Sherlekar A, Shiu P, Sims D, Sit RV, Slaidina M, Smith HE, Sterne G, Su Y, Sutton D, Tamayo M, Tan M, Tastekin I, Treiber C, Vacek D, Vogler G, Waddell S, Wang W, Wilson RI, Wolfner MF, Wong YE, Xie A, Xu J, Yamamoto S, Yan J, Yao Z, Yoda K, Zhu R, Zinzen RP
Science. 03/2022;375(6584):eabk2432. doi: 10.1126/science.abk2432

For more than 100 years, the fruit fly has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula , that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.

View Publication Page
04/01/14 | Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
Fuller SB, Straw AD, Peek MY, Murray RM, Dickinson MH
Proceedings of the National Academy of Sciences of the United States of America. 2014 Apr 1;111(13):E1182-91. doi: 10.1073/pnas.1323529111

Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay ( 100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly’s velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay ( 20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies’ multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae.

View Publication Page