Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1661-1670 of 3920 results
Pastalkova Lab
01/23/99 | Hippocampal damage induced by carbon monoxide poisoning and spreading depression is alleviated by chronic treatment with brain derived polypeptides.
Koroleva VI, Korolev OS, Mares V, Pastalkova E, Bures J
Brain Research. 1999 Jan 23;816:618-27

A model of acute carbon monoxide poisoning combined with spreading depression (SD) induced metabolic stress was used to examine the protective effects of cerebrolysin (CL) on the development of electrophysiological, behavioral and morphological signs of hypoxic damage. Capillary electrodes were implanted into the neocortex and hippocampus of anesthetized rats which were then exposed for 90 min to breathing of 0.8% to 0.5% CO, while 3 to 4 waves of cortical and hippocampal SD were elicited by microinjections of 5% KCl. Duration of SD-provoked depolarization of cerebral cortex and hippocampus was noted. Nine and 18 to 19 days later propagation of SD waves was recorded with the same electrodes and decrease of their amplitude was used as an index of brain damage which was significant in the hippocampus but not in the cortex. CL-treatment (2.5 ml/kg per day) started after CO administration and continued for 14 days significantly improved hippocampal recovery manifested by increased amplitude of SD waves. Behavioral tests performed 10 and 20 days after CO poisoning in the Morris water maze revealed better performance (escape latency 7 s) in the CL-treated than in untreated animals (14 s). Morphological analysis showed marked damage in the hippocampus consonant with electrophysiological and behavioral findings in the same animals. No apparent histological damage was found in rats exposed to CO inhalation alone without the additional SD-provoked depolarization. It is concluded that chronic CL-treatment enhances recovery of hippocampal tissue after hypoxic damage of intermediate severity.

View Publication Page
05/30/16 | Hippocampal global remapping for different sensory modalities in flying bats.
Geva-Sagiv M, Romani S, Las L, Ulanovsky N
Nature Neuroscience. 2016 May 30;19(7):952-8. doi: 10.1038/nn.4310

Hippocampal place cells encode the animal's spatial position. However, it is unknown how different long-range sensory systems affect spatial representations. Here we alternated usage of vision and echolocation in Egyptian fruit bats while recording from single neurons in hippocampal areas CA1 and subiculum. Bats flew back and forth along a linear flight track, employing echolocation in darkness or vision in light. Hippocampal representations remapped between vision and echolocation via two kinds of remapping: subiculum neurons turned on or off, while CA1 neurons shifted their place fields. Interneurons also exhibited strong remapping. Finally, hippocampal place fields were sharper under vision than echolocation, matching the superior sensory resolution of vision over echolocation. Simulating several theoretical models of place-cells suggested that combining sensory information and path integration best explains the experimental sharpening data. In summary, here we show sensory-based global remapping in a mammal, suggesting that the hippocampus does not contain an abstract spatial map but rather a 'cognitive atlas', with multiple maps for different sensory modalities.

View Publication Page
Magee Lab
11/21/12 | Hippocampal phase precession from dual input components.
Chance FS
The Journal of neuroscience : the official journal of the Society for Neuroscience. 2012 Nov 21;32:16693-703a. doi: 10.1523/JNEUROSCI.2786-12.2012

Phase precession is a well known phenomenon in which a hippocampal place cell will fire action potentials at successively earlier phases (relative to the theta-band oscillations recorded in the local field potential) as an animal moves through the cell’s receptive field (also known as a place field). We present a model in which CA1 pyramidal cell spiking is driven by dual input components arising from CA3 and EC3. The receptive fields of these two input components overlap but are offset in space from each other such that as the animal moves through the model place field, action potentials are driven first by the CA3 input component and then the EC3 input component. As CA3 synaptic input is known to arrive in CA1 at a later theta phase than EC3 input (Mizuseki et al., 2009; Montgomery et al., 2009), CA1 spiking advances in phase as the model transitions from CA3-driven spiking to EC3-driven spiking. Here spike phase is a function of animal location, placing our results in agreement with many experimental observations characterizing CA1 phase precession (O’Keefe and Recce, 1993; Huxter et al., 2003; Geisler et al., 2007). We predict that experimental manipulations that dramatically enhance or disrupt activity in either of these areas should have a significant effect on phase precession observed in CA1.

View Publication Page
08/17/12 | Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior.
Lee D, Lin B, Lee AK
Science. 2012 Aug 17;337:849-53. doi: 10.1126/science.1221489

The origin of the spatial receptive fields of hippocampal place cells has not been established. A hippocampal CA1 pyramidal cell receives thousands of synaptic inputs, mostly from other spatially tuned neurons; however, how the postsynaptic neuron’s cellular properties determine the response to these inputs during behavior is unknown. We discovered that, contrary to expectations from basic models of place cells and neuronal integration, a small, spatially uniform depolarization of the spatially untuned somatic membrane potential of a silent cell leads to the sudden and reversible emergence of a spatially tuned subthreshold response and place-field spiking. Such gating of inputs by postsynaptic neuronal excitability reveals a cellular mechanism for receptive field origin and may be critical for the formation of hippocampal memory representations.

View Publication Page
11/21/12 | Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors.
Graves AR, Moore SJ, Bloss EB, Mensh BD, Kath WL, Spruston N
Neuron. 2012 Nov 21;76(4):776-89. doi: 10.1016/j.neuron.2012.09.036

Relating the function of neuronal cell types to information processing and behavior is a central goal of neuroscience. In the hippocampus, pyramidal cells in CA1 and the subiculum process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information, which they transmit throughout the brain. Do these cells constitute a single class or are there multiple cell types with specialized functions? Using unbiased cluster analysis, we show that there are two morphologically and electrophysiologically distinct principal cell types that carry hippocampal output. We show further that these two cell types are inversely modulated by the synergistic action of glutamate and acetylcholine acting on metabotropic receptors that are central to hippocampal function. Combined with prior connectivity studies, our results support a model of hippocampal processing in which the two pyramidal cell types are predominantly segregated into two parallel pathways that process distinct modalities of information.

View Publication Page
12/02/22 | Hippocampal representations of foraging trajectories depend upon spatial context.
Jiang W, Xu S, Dudman JT
Nature Neuroscience. 2022 Dec 02;25(12):1693-1705. doi: 10.1038/s41593-022-01201-7

Animals learn trajectories to rewards in both spatial, navigational contexts and relational, non-navigational contexts. Synchronous reactivation of hippocampal activity is thought to be critical for recall and evaluation of trajectories for learning. Do hippocampal representations differentially contribute to experience-dependent learning of trajectories across spatial and relational contexts? In this study, we trained mice to navigate to a hidden target in a physical arena or manipulate a joystick to a virtual target to collect delayed rewards. In a navigational context, calcium imaging in freely moving mice revealed that synchronous CA1 reactivation was retrospective and important for evaluation of prior navigational trajectories. In a non-navigational context, reactivation was prospective and important for initiation of joystick trajectories, even in the same animals trained in both contexts. Adaptation of trajectories to a new target was well-explained by a common learning algorithm in which hippocampal activity makes dissociable contributions to reinforcement learning computations depending upon spatial context.

View Publication Page
01/01/23 | Hippocampal spatial representations exhibit a hyperbolic geometry that expands with experience.
Zhang H, Rich PD, Lee AK, Sharpee TO
Nature Neuroscience. 2023 Jan 01;26(1):131-139. doi: 10.1038/s41593-022-01212-4

Daily experience suggests that we perceive distances near us linearly. However, the actual geometry of spatial representation in the brain is unknown. Here we report that neurons in the CA1 region of rat hippocampus that mediate spatial perception represent space according to a non-linear hyperbolic geometry. This geometry uses an exponential scale and yields greater positional information than a linear scale. We found that the size of the representation matches the optimal predictions for the number of CA1 neurons. The representations also dynamically expanded proportional to the logarithm of time that the animal spent exploring the environment, in correspondence with the maximal mutual information that can be received. The dynamic changes tracked even small variations due to changes in the running speed of the animal. These results demonstrate how neural circuits achieve efficient representations using dynamic hyperbolic geometry.

View Publication Page
04/26/16 | Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons.
Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N
eLife. 2016;5:. doi: 10.7554/eLife.14997

Clarifying gene expression in narrowly defined neuronal populations can provide insight into cellular identity, computation, and functionality. Here, we used next-generation RNA sequencing (RNA-seq) to produce a quantitative, whole genome characterization of gene expression for the major excitatory neuronal classes of the hippocampus; namely, granule cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1. Moreover, for the canonical cell classes of the trisynaptic loop, we profiled transcriptomes at both dorsal and ventral poles, producing a cell-class- and region-specific transcriptional description for these populations. This dataset clarifies the transcriptional properties and identities of lesser-known cell classes, and moreover reveals unexpected variation in the trisynaptic loop across the dorsal-ventral axis. We have created a public resource, Hipposeq (http://hipposeq.janelia.org), which provides analysis and visualization of these data and will act as a roadmap relating molecules to cells, circuits, and computation in the hippocampus.

View Publication Page
02/01/11 | Histochemistry: live and in color.
Lavis LD
The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 2011 Feb;59:139-45. doi: 10.1369/0022155410395760

Histochemistry (chemistry in the context of biological tissue) is an invaluable set of techniques used to visualize biological structures. This field lies at the interface of organic chemistry, biochemistry, and biology. Integration of these disciplines over the past century has permitted the imaging of cells and tissues using microscopy. Today, by exploiting the unique chemical environments within cells, heterologous expression techniques, and enzymatic activity, histochemical methods can be used to visualize structures in living matter. This review focuses on the labeling techniques and organic fluorophores used in live cells.

View Publication Page
11/05/15 | Histone H3 threonine phosphorylation regulates asymmetric histone inheritance in the Drosophila male germline.
Xie J, Wooten M, Tran V, Chen B, Pozmanter C, Simbolon C, Betzig E, Chen X
Cell. 2015 Nov 5;163(4):920-33. doi: 10.1016/j.cell.2015.10.002

A long-standing question concerns how stem cells maintain their identity through multiple divisions. Previously, we reported that pre-existing and newly synthesized histone H3 are asymmetrically distributed during Drosophila male germline stem cell (GSC) asymmetric division. Here, we show that phosphorylation at threonine 3 of H3 (H3T3P) distinguishes pre-existing versus newly synthesized H3. Converting T3 to the unphosphorylatable residue alanine (H3T3A) or to the phosphomimetic aspartate (H3T3D) disrupts asymmetric H3 inheritance. Expression of H3T3A or H3T3D specifically in early-stage germline also leads to cellular defects, including GSC loss and germline tumors. Finally, compromising the activity of the H3T3 kinase Haspin enhances the H3T3A but suppresses the H3T3D phenotypes. These studies demonstrate that H3T3P distinguishes sister chromatids enriched with distinct pools of H3 in order to coordinate asymmetric segregation of "old" H3 into GSCs and that tight regulation of H3T3 phosphorylation is required for male germline activity.

View Publication Page