Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3924 Publications

Showing 3371-3380 of 3924 results
02/01/13 | Taok2 controls behavioral response to ethanol in mice.
Kapfhamer D, Taylor S, Zou ME, Lim JP, Kharazia V, Heberlein U
Genes, Brain, and Behavior. 2013 Feb;12(1):87-97. doi: 10.1111/j.1601-183X.2012.00834.x

Despite recent advances in the understanding of ethanol's biological action, many of the molecular targets of ethanol and mechanisms behind ethanol's effect on behavior remain poorly understood. In an effort to identify novel genes, the products of which regulate behavioral responses to ethanol, we recently identified a mutation in the dtao gene that confers resistance to the locomotor stimulating effect of ethanol in Drosophila. dtao encodes a member of the Ste20 family of serine/threonine kinases implicated in MAP kinase signaling pathways. In this study, we report that conditional ablation of the mouse dtao homolog, Taok2, constitutively and specifically in the nervous system, results in strain-specific and overlapping alterations in ethanol-dependent behaviors. These data suggest a functional conservation of dtao and Taok2 in mediating ethanol's biological action and identify Taok2 as a putative candidate gene for ethanol use disorders in humans.

View Publication Page
Svoboda Lab
11/19/13 | Tapered whiskers are required for active tactile sensation.
Hires SA, Pammer L, Svoboda K, Golomb D
eLife. 2013 Nov 19;2:e01350. doi: 10.7554/eLife.01350

Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001.

View Publication Page
04/01/12 | Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
Kim Y, Spruston N
Hippocampus. 2012 Apr;22(4):693-706. doi: 10.1002/hipo.20931

Pyramidal neurons in the subiculum project to a variety of cortical and subcortical areas in the brain to convey information processed in the hippocampus. Previous studies have shown that two groups of subicular pyramidal neurons–regular-spiking and bursting neurons–are distributed in an organized fashion along the proximal-distal axis, with more regular-spiking neurons close to CA1 (proximal) and more bursting neurons close to presubiculum (distal). Anatomically, neurons projecting to some targets are located more proximally along this axis, while others are located more distally. However, the relationship between the firing properties and the targets of subicular pyramidal neurons is not known. To study this relationship, we used in vivo injections of retrogradely transported fluorescent beads into each of nine different regions and conducted whole-cell current-clamp recordings from the bead-containing subicular neurons in acute brain slices. We found that subicular projections to each area were composed of a mixture of regular-spiking and bursting neurons. Neurons projecting to amygdala, lateral entorhinal cortex, nucleus accumbens, and medial/ventral orbitofrontal cortex were located primarily in the proximal subiculum and consisted mostly of regular-spiking neurons (\~{}80%). By contrast, neurons projecting to medial EC, presubiculum, retrosplenial cortex, and ventromedial hypothalamus were located primarily in the distal subiculum and consisted mostly of bursting neurons (\~{}80%). Neurons projecting to a thalamic nucleus were located in the middle portion of subiculum, and their probability of bursting was close to 50%. Thus, the fraction of bursting neurons projecting to each target region was consistent with the known distribution of regular-spiking and bursting neurons along the proximal-distal axis of the subiculum. Variation in the distribution of regular-spiking and bursting neurons suggests that different types of information are conveyed from the subiculum to its various targets.

View Publication Page
07/26/17 | Targeted manipulation of neuronal activity in behaving adult flies.
Hampel S, Seeds AM
Decoding Neural Circuit Structure and Function. 2016 Aug 15:191-222. doi: 10.1007/978-3-319-57363-2_7

The ability to control the activity of specific neurons in freely behaving animals provides an effective way to probe the contributions of neural circuits to behavior. Wide interest in studying principles of neural circuit function using the fruit fly Drosophila melanogaster has fueled the construction of an extensive transgenic toolkit for performing such neural manipulations. Here we describe approaches for using these tools to manipulate the activity of specific neurons and assess how those manipulations impact the behavior of flies. We also describe methods for examining connectivity among multiple neurons that together form a neural circuit controlling a specific behavior. This work provides a resource for researchers interested in examining how neurons and neural circuits contribute to the rich repertoire of behaviors performed by flies.

View Publication Page
Svoboda Lab
01/25/21 | Targeted photostimulation uncovers circuit motifs supporting short-term memory.
Daie K, Svoboda K, Druckmann S
Nature Neuroscience. 2021 Jan 25;24(2):259-265. doi: 10.1038/s41593-020-00776-3

Short-term memory is associated with persistent neural activity that is maintained by positive feedback between neurons. To explore the neural circuit motifs that produce memory-related persistent activity, we measured coupling between functionally characterized motor cortex neurons in mice performing a memory-guided response task. Targeted two-photon photostimulation of small (<10) groups of neurons produced sparse calcium responses in coupled neurons over approximately 100 μm. Neurons with similar task-related selectivity were preferentially coupled. Photostimulation of different groups of neurons modulated activity in different subpopulations of coupled neurons. Responses of stimulated and coupled neurons persisted for seconds, far outlasting the duration of the photostimuli. Photostimuli produced behavioral biases that were predictable based on the selectivity of the perturbed neuronal population, even though photostimulation preceded the behavioral response by seconds. Our results suggest that memory-related neural circuits contain intercalated, recurrently connected modules, which can independently maintain selective persistent activity.

View Publication Page
Tjian Lab
06/01/03 | Targeting genes and transcription factors to segregated nuclear compartments.
Isogai Y, Tjian R
Current Opinion in Cell Biology. 2003 Jun;15(3):296-303. doi: 10.1073/pnas.1100640108

With increasingly detailed images of nuclear structures revealed by advanced microscopy, a remarkably compartmentalized cell nucleus has come into focus. Although this complex nuclear organization remains largely unexplored, some progress has been made in deciphering the functional aspects of various subnuclear structures, revealing how this elaborate framework can influence gene activation. Several recent studies have helped illustrate how cells might utilize the nuclear architecture as an additional level of transcriptional control, perhaps by targeting genes and regulatory factors to specific sites within the nucleus that are designated for active RNA synthesis.

View Publication Page
06/02/22 | Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress.
Liu X, Viswanadhapalli S, Kumar S, Lee T, Moore A, Ma S, Chen L, Hsieh M, Li M, Sareddy GR, Parra K, Blatt EB, Reese TC, Zhao Y, Chang A, Yan H, Xu Z, Pratap UP, Liu Z, Roggero CM, Tan Z, Weintraub ST, Peng Y, Tekmal RR, Arteaga CL, Lippincott-Schwartz J, Vadlamudi RK, Ahn J, Raj GV
Nature Cancer. 2022 Jun 02;3(7):866-884. doi: 10.1038/s43018-022-00389-8

Triple-negative breast cancer (TNBC) has a poor clinical outcome, due to a lack of actionable therapeutic targets. Herein we define lysosomal acid lipase A (LIPA) as a viable molecular target in TNBC and identify a stereospecific small molecule (ERX-41) that binds LIPA. ERX-41 induces endoplasmic reticulum (ER) stress resulting in cell death, and this effect is on target as evidenced by specific LIPA mutations providing resistance. Importantly, we demonstrate that ERX-41 activity is independent of LIPA lipase function but dependent on its ER localization. Mechanistically, ERX-41 binding of LIPA decreases expression of multiple ER-resident proteins involved in protein folding. This targeted vulnerability has a large therapeutic window, with no adverse effects either on normal mammary epithelial cells or in mice. Our study implicates a targeted strategy for solid tumors, including breast, brain, pancreatic and ovarian, whereby small, orally bioavailable molecules targeting LIPA block protein folding, induce ER stress and result in tumor cell death.

View Publication Page
07/06/22 | Taste quality interactions and transformations in a sensorimotor circuit
Philip K. Shiu , Gabriella R. Sterne , Stefanie Engert , Barry J. Dickson , Kristin Scott
eLife. 2022 Jul 06:. doi: 10.1101/2022.03.06.483180

Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most of the neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Hunger signals act at select second-order neurons to increase feeding initiation in food-deprived animals. In contrast, a bitter taste pathway inhibits premotor neurons, illuminating a central mechanism that weighs sugar and bitter tastes to promote or inhibit feeding. Together, these studies reveal the neural circuit basis for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.

View Publication Page
Grigorieff Lab
06/24/14 | Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center.
Koh CS, Brilot AF, Grigorieff N, Korostelev AA
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9139-44. doi: 10.1073/pnas.1406335111

In cap-dependent translation initiation, the open reading frame (ORF) of mRNA is established by the placement of the AUG start codon and initiator tRNA in the ribosomal peptidyl (P) site. Internal ribosome entry sites (IRESs) promote translation of mRNAs in a cap-independent manner. We report two structures of the ribosome-bound Taura syndrome virus (TSV) IRES belonging to the family of Dicistroviridae intergenic IRESs. Intersubunit rotational states differ in these structures, suggesting that ribosome dynamics play a role in IRES translocation. Pseudoknot I of the IRES occupies the ribosomal decoding center at the aminoacyl (A) site in a manner resembling that of the tRNA anticodon-mRNA codon. The structures reveal that the TSV IRES initiates translation by a previously unseen mechanism, which is conceptually distinct from initiator tRNA-dependent mechanisms. Specifically, the ORF of the IRES-driven mRNA is established by the placement of the preceding tRNA-mRNA-like structure in the A site, whereas the 40S P site remains unoccupied during this initial step.

View Publication Page
Tjian Lab
09/01/08 | TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription.
Hsu J, Juven-Gershon T, Marr MT, Wright KJ, Tjian R, Kadonaga JT
Genes & Development. 2008 Sep 1;22(17):2353-8. doi: 10.1073/pnas.1100640108

The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional module. RNAi depletion and overexpression experiments revealed a genetic circuit that controls the balance of transcription from two core promoter motifs, the TATA box and the downstream core promoter element (DPE). In this circuit, TBP activates TATA-dependent transcription and represses DPE-dependent transcription, whereas Mot1 and NC2 block TBP function and thus repress TATA-dependent transcription and activate DPE-dependent transcription. This regulatory circuit is likely to be one means by which biological networks can transmit transcriptional signals, such as those from DPE-specific and TATA-specific enhancers, via distinct pathways.

View Publication Page