Filter
Associated Lab
- Ahrens Lab (3) Apply Ahrens Lab filter
- Betzig Lab (8) Apply Betzig Lab filter
- Beyene Lab (1) Apply Beyene Lab filter
- Clapham Lab (3) Apply Clapham Lab filter
- Dudman Lab (2) Apply Dudman Lab filter
- Harris Lab (3) Apply Harris Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Ji Lab (1) Apply Ji Lab filter
- Keller Lab (3) Apply Keller Lab filter
- Lavis Lab (147) Apply Lavis Lab filter
- Lippincott-Schwartz Lab (6) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (15) Apply Liu (Zhe) Lab filter
- Looger Lab (8) Apply Looger Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (2) Apply Podgorski Lab filter
- Schreiter Lab (8) Apply Schreiter Lab filter
- Shroff Lab (1) Apply Shroff Lab filter
- Singer Lab (6) Apply Singer Lab filter
- Spruston Lab (2) Apply Spruston Lab filter
- Stern Lab (2) Apply Stern Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (4) Apply Svoboda Lab filter
- Tebo Lab (1) Apply Tebo Lab filter
- Tillberg Lab (2) Apply Tillberg Lab filter
- Tjian Lab (5) Apply Tjian Lab filter
- Turner Lab (3) Apply Turner Lab filter
- Wang (Shaohe) Lab (1) Apply Wang (Shaohe) Lab filter
Associated Project Team
Publication Date
- 2025 (8) Apply 2025 filter
- 2024 (13) Apply 2024 filter
- 2023 (10) Apply 2023 filter
- 2022 (13) Apply 2022 filter
- 2021 (10) Apply 2021 filter
- 2020 (9) Apply 2020 filter
- 2019 (6) Apply 2019 filter
- 2018 (12) Apply 2018 filter
- 2017 (16) Apply 2017 filter
- 2016 (13) Apply 2016 filter
- 2015 (5) Apply 2015 filter
- 2014 (7) Apply 2014 filter
- 2013 (4) Apply 2013 filter
- 2012 (4) Apply 2012 filter
- 2011 (5) Apply 2011 filter
- 2010 (1) Apply 2010 filter
- 2009 (2) Apply 2009 filter
- 2008 (4) Apply 2008 filter
- 2007 (3) Apply 2007 filter
- 2006 (2) Apply 2006 filter
Type of Publication
147 Publications
Showing 111-120 of 147 resultsRhodamine dyes exist in equilibrium between a fluorescent zwitterion and a nonfluorescent lactone. Tuning this equilibrium toward the nonfluorescent lactone form can improve cell-permeability and allow creation of "fluorogenic" compounds-ligands that shift to the fluorescent zwitterion upon binding a biomolecular target. An archetype fluorogenic dye is the far-red tetramethyl-Si-rhodamine (SiR), which has been used to create exceptionally useful labels for advanced microscopy. Here, we develop a quantitative framework for the development of new fluorogenic dyes, determining that the lactone-zwitterion equilibrium constant () is sufficient to predict fluorogenicity. This rubric emerged from our analysis of known fluorophores and yielded new fluorescent and fluorogenic labels with improved performance in cellular imaging experiments. We then designed a novel fluorophore-Janelia Fluor 526 (JF)-with SiR-like properties but shorter fluorescence excitation and emission wavelengths. JF is a versatile scaffold for fluorogenic probes including ligands for self-labeling tags, stains for endogenous structures, and spontaneously blinking labels for super-resolution immunofluorescence. JF constitutes a new label for advanced microscopy experiments, and our quantitative framework will enable the rational design of other fluorogenic probes for bioimaging.
The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells - 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells.
Although mRNA translation is a fundamental biological process, it has never been imaged in real-time with single molecule precision in vivo. To achieve this, we developed Nascent Chain Tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify single mRNA protein synthesis dynamics. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 s. Polysomes contain ~1 ribosome every 200-900 nucleotides and are globular rather than elongated in shape. By developing multi-color probes, we show most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics.
The field of organic chemistry began with 19th century scientists identifying and then expanding upon synthetic dye molecules for textiles. In the 20th century, dye chemistry continued with the aim of developing photographic sensitizers and laser dyes. Now, in the 21st century, the rapid evolution of biological imaging techniques provides a new driving force for dye chemistry. Of the extant collection of synthetic fluorescent dyes for biological imaging, two classes reign supreme: rhodamines and cyanines. Here, we provide an overview of recent examples where modern chemistry is used to build these old-but-venerable classes of optically responsive molecules. These new synthetic methods access new fluorophores, which then enable sophisticated imaging experiments leading to new biological insights.
Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output.
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.
Small molecules are important tools to measure and modulate intracellular signaling pathways. A longstanding limitation for using chemical compounds in complex tissues has been the inability to target bioactive small molecules to a specific cell class. Here, we describe a generalizable esterase-ester pair capable of targeted delivery of small molecules to living cells and tissue with cellular specificity. We used fluorogenic molecules to rapidly identify a small ester masking motif that is stable to endogenous esterases, but is efficiently removed by an exogenous esterase. This strategy allows facile targeting of dyes and drugs in complex biological environments to label specific cell types, illuminate gap junction connectivity, and pharmacologically perturb distinct subsets of cells. We expect this approach to have general utility for the specific delivery of many small molecules to defined cellular populations.
The GFP-based superecliptic pHluorin (SEP) enables detection of exocytosis and endocytosis, but its performance has not been duplicated in red fluorescent protein scaffolds. Here we describe "semisynthetic" pH-sensitive protein conjugates with organic fluorophores, carbofluorescein, and Virginia Orange that match the properties of SEP. Conjugation to genetically encoded self-labeling tags or antibodies allows visualization of both exocytosis and endocytosis, constituting new bright sensors for these key steps of synaptic transmission.
The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.
Mycobacterium tuberculosis has a complex life cycle transitioning between active and dormant growth states depending on environmental conditions. LipN (Rv2970c) is a conserved mycobacterial serine hydrolase with regulated catalytic activity at the interface between active and dormant growth conditions. LipN also catalyzes the xenobiotic degradation of a tertiary ester substrate and contains multiple conserved motifs connected with the ability to catalyze the hydrolysis of difficult tertiary ester substrates. Herein, we expanded a library of fluorogenic ester substrates to include more tertiary and constrained esters and screened 33 fluorogenic substrates for activation by LipN, identifying its unique substrate signature. LipN preferred short, unbranched ester substrates, but had its second highest activity against a heteroaromatic five-membered oxazole ester. Oxazole esters are present in multiple mycobacterial serine hydrolase inhibitors but have not been tested widely as ester substrates. Combined structural modeling, kinetic measurements, and substitutional analysis of LipN showcased a fairly rigid binding pocket preorganized for catalysis of short ester substrates. Substitution of diverse amino acids across the binding pocket significantly impacted the folded stability and catalytic activity of LipN with two conserved motifs (HGGGW and GDSAG) playing interconnected, multidimensional roles in regulating its substrate specificity. Together this detailed substrate specificity profile of LipN illustrates the complex interplay between structure and function in mycobacterial hormone-sensitive lipase homologues and indicates oxazole esters as promising inhibitor and substrate scaffolds for mycobacterial hydrolases.