Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Lavis Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

138 Publications

Showing 81-90 of 138 results
06/08/18 | Measuring the global substrate specificity of mycobacterial serine hydrolases using a library of fluorogenic ester substrates.
Bassett B, Waibel B, White A, Hansen H, Stephens D, Koelper A, Larsen EM, Kim C, Glanzer A, Lavis LD, Hoops GC, Johnson RJ
ACS Infectious Diseases. 2018 Jun 8;4(6):904-11. doi: 10.1021/acsinfecdis.7b00263

Among the proteins required for lipid metabolism in Mycobacterium tuberculosis are a significant number of uncharacterized serine hydrolases, especially lipases and esterases. Using a streamlined synthetic method, a library of immolative fluorogenic ester substrates was expanded to better represent the natural lipidomic diversity of Mycobacterium. This expanded fluorogenic library was then used to rapidly characterize the global structure activity relationship (SAR) of mycobacterial serine hydrolases in M. smegmatis under different growth conditions. Confirmation of fluorogenic substrate activation by mycobacterial serine hydrolases was performed using nonspecific serine hydrolase inhibitors and reinforced the biological significance of the SAR. The hydrolases responsible for the global SAR were then assigned using gel-resolved activity measurements, and these assignments were used to rapidly identify the relative substrate specificity of previously uncharacterized mycobacterial hydrolases. These measurements provide a global SAR of mycobacterial hydrolase activity, a picture of cycling hydrolase activity, and a detailed substrate specificity profile for previously uncharacterized hydrolases.

View Publication Page
02/28/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Kumar P, Lavis LD
Annual Review of Neuroscience. 2022 Feb 28:. doi: 10.1146/annurev-neuro-110520-030031

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the , Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
02/28/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Kumar P, Lavis LD
Annual Review Neuroscience. 2022 Feb 28:. doi: 10.1146/annurev-neuro-110520-030031

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the , Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
07/08/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Kumar P, Lavis LD
Annual Review Neuroscience. 2022 Jul 08;45:131-150. doi: 10.1146/annurev-neuro-110520-030031

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems.

View Publication Page
07/18/24 | Mesoscale chromatin confinement facilitates target search of pioneer transcription factors in live cells
Wang Z, Wang B, Niu D, Yin C, Bi Y, Cattoglio C, Loh KM, Lavis LD, Ge H, Deng W
bioRxiv. 2024 Jul 18:. doi: 10.1101/2024.07.18.604200

Pioneer transcription factors (PTFs) possess the unique capability to access closed chromatin regions and initiate cell fate changes, yet the underlying mechanisms remain elusive. Here, we characterized the single-molecule dynamics of PTFs targeting chromatin in living cells, revealing a notable “confined target search” mechanism. PTFs like FOXA1, FOXA2, SOX2, OCT4 and KLF4 sampled chromatin more frequently than non-pioneer factor MYC, alternating between fast free diffusion in the nucleus and slower confined diffusion within mesoscale zones. Super-resolved microscopy showed closed chromatin organized as mesoscale nucleosome-dense domains, confining FOXA2 diffusion locally and enriching its binding. We pinpointed specific histone-interacting disordered regions, distinct from DNA-binding domain, crucial for confined target search kinetics and pioneer activity within closed chromatin. Fusion to other factors enhanced pioneer activity. Kinetic simulations suggested transient confinement could increase target association rate by shortening search time and binding repeatedly. Our findings illuminate how PTFs recognize and exploit closed chromatin organization to access targets, revealing a pivotal aspect of gene regulation.

View Publication Page
02/01/22 | Molecular cartography: charting the sea of molecular organization in live synapses with nanoscale precision
Nelson AJ, Zheng Q, Lavis LD, Ryan TA
Biophysical Journal. 2022 Feb 01;121(3):302a. doi: 10.1016/j.bpj.2021.11.1246

Understanding live-cell behavior in part requires high precision mapping of molecular species in 3-D dynamic environments. Approaches like single-molecule localization microscopy (SMLM) offer high promise for challenges posed by molecular cartography. Effectively, the precision of these approaches is dependent on the how many photons / second a fluorescent marker is capable of emitting. For this reason, many SRLM experiments are typically done using fluorescent organic dyes (such as Alexa Fluors) in reducing chemical environments which cause some organic dyes to stochastically cycle through dark states, allowing single-molecule localization (e.g. (d)STORM). The need to couple these dyes to antibodies and the harsh reducing conditions makes their application to live cell work problematic. To overcome these limitations, we made use of modifications to Janelia Fluor-based dyes which make them spontaneously cycle through dark states (blink) under physiological imaging conditions. The dyes are spectrally compatible with photo-activatable fluorescent proteins such as mEos and allow for simultaneous 2-color superresolution microscopy. When conjugated to a HaloTag, these artificial dyes can bind genetically encodable targets in live samples, allowing subsequent measurement in a live-cell environment. To correct for nanoscale chromatic aberrations we developed a new machine-learning based approach with reconstruction errors below achievable localization precisions. We show that these methods allow the reconstruction of live synapse surfaces and a variety of the associated molecular machineries with up to 50 nm accuracy in 3 dimensions.

View Publication Page
07/11/19 | Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding.
Boersma S, Khuperkar D, Verhagen BM, Sonneveld S, Grimm JB, Lavis LD, Tanenbaum ME
Cell. 2019 Jul 11;178(2):458-72. doi: 10.1016/j.cell.2019.05.001

mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous, as multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a new fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real-time. We find that start site selection is largely stochastic, but that the probability of using a particular start site differs among mRNA molecules, and can be dynamically regulated over time. Together, this study provides key insights into translation start site selection heterogeneity, and provides a powerful toolbox to visualize complex translation dynamics.

View Publication Page
07/03/22 | Multifunctional fluorophores for live-cell imaging and affinity capture of proteins
Kumar P, Jason D. Vevea , Edwin R. Chapman , Luke D. Lavis
bioRxiv. 2022 Jul 03:. doi: 10.1101/2022.07.02.498544

The development of enzyme-based self-labeling tags allow the labeling of proteins in living cells with synthetic small-molecules. Use of a fluorophore-containing ligand enables the visualization of protein location inside cells using fluorescence microscopy. Alternatively, deployment of a biotin-containing ligand allows purification of tagged protein using affinity resins. Despite these various applications of self-labeling tags, most ligands serve a single purpose. Here, we describe self-labeling tag ligands that allow both visualization and subsequent capture of a protein. A key design principle is exploiting the chemical properties and size of a rhodamine fluorophore to optimize cell-permeability of the ligand and the capture efficiency of the biotin conjugate. This work generates useful “multifunctional” fluorophores with generalizable design principles that will allow the construction of new tools for biology.

View Publication Page
10/27/23 | Nanoscale imaging reveals the mechanisms of ER-to-Golgi transport via a dynamic tubular-vesicular network
Luis Wong-Dilworth , Gresy Bregu , Steffen Restel , Carmen Rodilla-Ramirez , Svenja Ebeling , Shelly Harel , Paula Leupold , Jonathan Grimm , Luke D. Lavis , Jessica Angulo-Capel , Felix Campelo , Francesca Bottanelli
bioRxiv. 2023 Oct 27:. doi: 10.1101/2023.10.27.563951

The endoplasmic reticulum (ER) and the Golgi apparatus are the first sorting stations along the secretory pathway of mammalian cells and have a crucial role in protein quality control and cellular homeostasis. While machinery components mediating ER-to-Golgi transport have been mapped, it is unclear how exchange between the two closely juxtaposed organelles is coordinated in living cells. Here, using gene editing to tag machinery components, live-cell confocal and stimulated emission depletion (STED) super-resolution microscopy, we show that ER-to-Golgi transport occurs via a dynamic network of tubules positive for the small GTPase ARF4. swCOPI machinery is tightly associated to this network and moves with tubular-vesicular structures. Strikingly, the ARF4 network appears to be continuous with the ER and ARF4 tubules remodel around static ER exit sites (ERES) defined by COPII machinery. We were further able to dissect the steps of ER-to-Golgi transport with functional trafficking assays. A wave of cargo released from the ER percolates through peripheral and Golgi-tethered ARF4 structures before filling the cis-Golgi. Perturbation via acute degradation of ARF4 shows an active regulatory role for the GTPase and COPI in anterograde transport. Our data supports a model in which anterograde ER-to-Golgi transport occurs via an ARF4 tubular-vesicular network directly connecting the ER and Golgi-associated pre-cisternae.

View Publication Page
01/06/20 | Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging.
Zhang Y, Schroeder LK, Lessard MD, Kidd P, Chung J, Song Y, Benedetti L, Li Y, Ries J, Grimm JB, Lavis LD, De Camilli P, Rothman JE, Baddeley D, Bewersdorf J
Nature Methods. 2020 Jan 06;17(2):225-231. doi: 10.1038/s41592-019-0676-4

Combining the molecular specificity of fluorescent probes with three-dimensional imaging at nanoscale resolution is critical for investigating the spatial organization and interactions of cellular organelles and protein complexes. We present a 4Pi single-molecule switching super-resolution microscope that enables ratiometric multicolor imaging of mammalian cells at 5-10-nm localization precision in three dimensions using 'salvaged fluorescence'. Imaging two or three fluorophores simultaneously, we show fluorescence images that resolve the highly convoluted Golgi apparatus and the close contacts between the endoplasmic reticulum and the plasma membrane, structures that have traditionally been the imaging realm of electron microscopy. The salvaged fluorescence approach is equally applicable in most single-objective microscopes.

View Publication Page