Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

167 Publications

Showing 81-90 of 167 results
10/31/17 | Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers.
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM
BMC Biology. 2017 Oct 31;15(1):102. doi: 10.1186/s12915-017-0432-0

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.

View Publication Page
07/01/14 | MicroRNA binding to the HIV-1 Gag protein inhibits Gag assembly and virus production.
Chen AK, Sengupta P, Waki K, Van Engelenburg SB, Ochiya T, Ablan SD, Freed EO, Lippincott-Schwartz J
Proceedings of the National Academy of Sciences of the United States of America. 2014 Jul 1;111(26):E2676-83. doi: 10.1073/pnas.1408037111

MicroRNAs (miRNAs) are small, 18-22 nt long, noncoding RNAs that act as potent negative gene regulators in a variety of physiological and pathological processes. To repress gene expression, miRNAs are packaged into RNA-induced silencing complexes (RISCs) that target mRNAs for degradation and/or translational repression in a sequence-specific manner. Recently, miRNAs have been shown to also interact with proteins outside RISCs, impacting cellular processes through mechanisms not involving gene silencing. Here, we define a previously unappreciated activity of miRNAs in inhibiting RNA-protein interactions that in the context of HIV-1 biology blocks HIV virus budding and reduces virus infectivity. This occurs by miRNA binding to the nucleocapsid domain of the Gag protein, the main structural component of HIV-1 virions. The resulting miRNA-Gag complexes interfere with viral-RNA-mediated Gag assembly and viral budding at the plasma membrane, with imperfectly assembled Gag complexes endocytosed and delivered to lysosomes. The blockade of virus production by miRNA is reversed by adding the miRNA's target mRNA and stimulated by depleting Argonaute-2, suggesting that when miRNAs are not mediating gene silencing, they can block HIV-1 production through disruption of Gag assembly on membranes. Overall, our findings have significant implications for understanding how cells modulate HIV-1 infection by miRNA expression and raise the possibility that miRNAs can function to disrupt RNA-mediated protein assembly processes in other cellular contexts.

View Publication Page
08/01/16 | Midbody remnant licenses primary cilia formation in epithelial cells.
Ott CM
The Journal of Cell Biology. 2016 Aug 1;214(3):237-9. doi: 10.1083/jcb.201607046

Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium-who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201601020) supports this emerging model.

View Publication Page
01/01/10 | Mitochondria supply membranes for autophagosome biogenesis during starvation.
Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J
Cell. 2010 May 14;141(4):656-67. doi: 10.1016/j.cell.2010.04.009

Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes.

View Publication Page
04/17/25 | Mitochondrial complexity is regulated at ER-mitochondria contact sites via PDZD8-FKBP8 tethering.
Nakamura K, Aoyama-Ishiwatari S, Nagao T, Paaran M, Obara CJ, Sakurai-Saito Y, Johnston J, Du Y, Suga S, Tsuboi M, Nakakido M, Tsumoto K, Kishi Y, Gotoh Y, Kwak C, Rhee H, Seo JK, Kosako H, Potter C, Carragher B, Lippincott-Schwartz J, Polleux F, Hirabayashi Y
Nat Commun. 2025 Apr 17;16(1):3401. doi: 10.1038/s41467-025-58538-3

Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identify the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-electron tomography, and correlative light-electron microscopy. Single molecule tracking reveals highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and captures at MERCS. Overexpression of FKBP8 is sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrate their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.

 

Preprint: 10.1101/2025.02.22.639343

View Publication Page
06/01/18 | Monitoring the effects of pharmacological reagents on mitochondrial morphology.
Fu D, Lippincott-Schwartz J
Current Protocols in Cell Biology. 2018 Jun;79(1):e45. doi: 10.1002/cpcb.45

This protocol describes how to apply appropriate pharmacological controls to induce mitochondrial fusion or fission in studies of mitochondria morphology for four different mammalian cell types, HepG2 human liver hepatocellular carcinoma cells, MCF7 human breast adenocarcinoma cells, HEK293 human embryonic kidney cells, and collagen sandwich culture of primary rat hepatocytes. The protocol provides methods of treating cells with these pharmacological controls, staining mitochondria with commercially available MitoTracker Green and TMRE dyes, and imaging the mitochondrial morphology in live cells using a confocal fluorescent microscope. It also describes the cell culture methods needed for this protocol. © 2018 by John Wiley & Sons, Inc.

View Publication Page
09/03/22 | Motion of single molecular tethers reveals dynamic subdomains at ER-mitochondria contact sites
Christopher J. Obara , Jonathon Nixon-Abell , Andrew S. Moore , Federica Riccio , David P. Hoffman , Gleb Shtengel , C. Shan Xu , Kathy Schaefer , H. Amalia Pasolli , Jean-Baptiste Masson , Harald F. Hess , Christopher P. Calderon , Craig Blackstone , Jennifer Lippincott-Schwartz
bioRxiv. 2022 Sep 03:. doi: 10.1101/2022.09.03.505525

To coordinate cellular physiology, eukaryotic cells rely on the inter-organelle transfer of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites3. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle4,5. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation6,7, a clear understanding of their nanoscale structure and regulation is still lacking. Here, we combine 3D electron microscopy with high-speed molecular tracking of a model organelle tether, VAPB, to map the structure and diffusion landscape of ERMCSs. From EM reconstructions, we identified subdomains within the contact site where ER membranes dramatically deform to match local mitochondrial curvature. In parallel live cell experiments, we observed that the VAPB tethers that mediate this interface were not immobile, but rather highly dynamic, entering and leaving the site in seconds. These subdomains enlarged during nutrient stress, indicating ERMCSs can readily remodel under different physiological conditions. An ALS-associated mutation in VAPB altered the normal fluidity of contact sites, likely perturbing effective communication across the contact site and preventing remodeling. These results establish high speed single molecule imaging as a new tool for mapping the structure of contact site interfaces and suggest that the diffusion landscape of VAPB is a crucial component of ERMCS homeostasis.

View Publication Page
01/24/24 | Motion of VAPB molecules reveals ER-mitochondria contact site subdomains.
Obara CJ, Nixon-Abell J, Moore AS, Riccio F, Hoffman DP, Shtengel G, Xu CS, Schaefer K, Pasolli HA, Masson J, Hess HF, Calderon CP, Blackstone C, Lippincott-Schwartz J
Nature. 2024 Jan 24;626(7997):169-176. doi: 10.1038/s41586-023-06956-y

To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.

View Publication Page
08/17/18 | mTOR-dependent phosphorylation controls TFEB nuclear export.
Napolitano G, Esposito A, Choi H, Matarese M, Benedetti V, Di Malta C, Monfregola J, Medina DL, Lippincott-Schwartz J, Ballabio A
Nature Communications. 2018 Aug 17;9(1):3312. doi: 10.1038/s41467-018-05862-6

During starvation the transcriptional activation of catabolic processes is induced by the nuclear translocation and consequent activation of transcription factor EB (TFEB), a master modulator of autophagy and lysosomal biogenesis. However, how TFEB is inactivated upon nutrient refeeding is currently unknown. Here we show that TFEB subcellular localization is dynamically controlled by its continuous shuttling between the cytosol and the nucleus, with the nuclear export representing a limiting step. TFEB nuclear export is mediated by CRM1 and is modulated by nutrient availability via mTOR-dependent hierarchical multisite phosphorylation of serines S142 and S138, which are localized in proximity of a nuclear export signal (NES). Our data on TFEB nucleo-cytoplasmic shuttling suggest an unpredicted role of mTOR in nuclear export.

View Publication Page
05/29/12 | Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm.
Daniels BR, Rikhy R, Renz M, Dobrowsky TM, Lippincott-Schwartz J
Proceedings of the National Academy of Sciences of the United States of America. 2012 May 29;109(22):8588-93. doi: 10.1073/pnas.1204270109

Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional "compartmentalization" has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial Drosophila embryo on the effective diffusivity of cytoplasmic proteins. Our results demonstrate that the presence of transient mitotic membrane furrows results in a multiscale diffusion effect that has a significant impact on effective diffusion rates across the embryo. Using a combination of live-cell experiments and computational modeling, we characterize these effects and relate effective bulk diffusion rates to instantaneous diffusion coefficients throughout the syncytial blastoderm nuclear cycle phase of the early embryo. This multiscale effect may be related to the effect of interphase nuclei on effective diffusion, and thus we propose that an as-yet-unidentified role of syncytial membrane furrows is to temporally regulate bulk embryonic diffusion rates to balance the multiscale effect of interphase nuclei, which ultimately stabilizes the shapes of various morphogen gradients.

View Publication Page