Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 1231-1240 of 3945 results
Looger Lab
04/02/15 | Dynamics of ionic shifts in cortical spreading depression.
Enger R, Tang W, Vindedal GF, Jensen V, Johannes Helm P, Sprengel R, Looger LL, Nagelhus EA
Cerebral Cortex. 2015 Apr 2;25(11):4469-76. doi: 10.1093/cercor/bhv054

Cortical spreading depression is a slowly propagating wave of near-complete depolarization of brain cells followed by temporary suppression of neuronal activity. Accumulating evidence indicates that cortical spreading depression underlies the migraine aura and that similar waves promote tissue damage in stroke, trauma, and hemorrhage. Cortical spreading depression is characterized by neuronal swelling, profound elevation of extracellular potassium and glutamate, multiphasic blood flow changes, and drop in tissue oxygen tension. The slow speed of the cortical spreading depression wave implies that it is mediated by diffusion of a chemical substance, yet the identity of this substance and the pathway it follows are unknown. Intercellular spread between gap junction-coupled neurons or glial cells and interstitial diffusion of K(+) or glutamate have been proposed. Here we use extracellular direct current potential recordings, K(+)-sensitive microelectrodes, and 2-photon imaging with ultrasensitive Ca(2+) and glutamate fluorescent probes to elucidate the spatiotemporal dynamics of ionic shifts associated with the propagation of cortical spreading depression in the visual cortex of adult living mice. Our data argue against intercellular spread of Ca(2+) carrying the cortical spreading depression wavefront and are in favor of interstitial K(+) diffusion, rather than glutamate diffusion, as the leading event in cortical spreading depression.

View Publication Page
Card Lab
01/01/04 | Dynamics of leg muscle function in tammar wallabies (M. eugenii) during level versus incline hopping.
Biewener AA, McGowan C, Card GM, Baudinette RV
The Journal of Experimental Biology. 2004 Jan;207(Pt 2):211-23

The goal of our study was to examine whether the in vivo force-length behavior, work and elastic energy savings of distal muscle-tendon units in the legs of tammar wallabies (Macropus eugenii) change during level versus incline hopping. To address this question, we obtained measurements of muscle activation (via electromyography), fascicle strain (via sonomicrometry) and muscle-tendon force (via tendon buckles) from the lateral gastrocnemius (LG) and plantaris (PL) muscles of tammar wallabies trained to hop on a level and an inclined (10 degrees, 17.4% grade) treadmill at two speeds (3.3 m s(-1) and 4.2 m s(-1)). Similar patterns of muscle activation, force and fascicle strain were observed under both level and incline conditions. This also corresponded to similar patterns of limb timing and movement (duty factor, limb contact time and hopping frequency). During both level and incline hopping, the LG and PL exhibited patterns of fascicle stretch and shortening that yielded low levels of net fascicle strain [LG: level, -1.0+/-4.6% (mean +/- S.E.M.) vs incline, 0.6+/-4.5%; PL: level, 0.1+/-1.0% vs incline, 0.4+/-1.6%] and muscle work (LG: level, -8.4+/-8.4 J kg(-1) muscle vs incline, -6.8+/-7.5 J kg(-1) muscle; PL: level, -2.0+/-0.6 J kg(-1) muscle vs incline, -1.4+/-0.7 J kg(-1) muscle). Consequently, neither muscle significantly altered its contractile dynamics to do more work during incline hopping. Whereas electromyographic (EMG) phase, duration and intensity did not differ for the LG, the PL exhibited shorter but more intense periods of activation, together with reduced EMG phase (P<0.01), during incline versus level hopping. Our results indicate that design for spring-like tendon energy savings and economical muscle force generation is key for these two distal muscle-tendon units of the tammar wallaby, and the need to accommodate changes in work associated with level versus incline locomotion is achieved by more proximal muscles of the limb.

View Publication Page
Singer Lab
03/01/14 | Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons.
Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH, Rossoll W, Bassell GJ
Developmental Neurobiology. 2014 Mar;74(3):319-32. doi: 10.1002/dneu.22111

Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1.

View Publication Page
Cardona Lab
03/01/08 | Dynamics of zebrafish somitogenesis.
Schröter C, Herrgen L, Cardona A, Brouhard GJ, Feldman B, Oates AC
Developmental Dynamics. 2008 Mar;237(3):545-53. doi: 10.1002/dvdy.21458

Vertebrate somitogenesis is a rhythmically repeated morphogenetic process. The dependence of somitogenesis dynamics on axial position and temperature has not been investigated systematically in any species. Here we use multiple embryo time-lapse imaging to precisely estimate somitogenesis period and somite length under various conditions in the zebrafish embryo. Somites form at a constant period along the trunk, but the period gradually increases in the tail. Somite length varies along the axis in a stereotypical manner, with tail somites decreasing in size. Therefore, our measurements prompt important modifications to the steady-state Clock and Wavefront model: somitogenesis period, somite length, and wavefront velocity all change with axial position. Finally, we show that somitogenesis period changes more than threefold across the standard developmental temperature range, whereas the axial somite length distribution is temperature invariant. This finding indicates that the temperature-induced change in somitogenesis period exactly compensates for altered axial growth.

View Publication Page
02/06/16 | Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo.
Rikhy R, Mavrakis M, Lippincott-Schwartz J
Biology open. 2015;4(3):301-11. doi: 10.1242/bio.20149936

The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo.

View Publication Page
Looger Lab
03/23/16 | Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington's Disease model mice.
Jiang R, Diaz-Castro B, Looger LL, Khakh BS
The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2016 Mar 23;36(12):3453-70. doi: 10.1523/JNEUROSCI.3693-15.2016

UNLABELLED: Astrocytes tile the entire CNS, but their functions within neural circuits in health and disease remain incompletely understood. We used genetically encoded Ca(2+)and glutamate indicators to explore the rules for astrocyte engagement in the corticostriatal circuit of adult wild-type (WT) and Huntington's disease (HD) model mice at ages not accompanied by overt astrogliosis (at approximately postnatal days 70-80). WT striatal astrocytes displayed extensive spontaneous Ca(2+)signals, but did not respond to cortical stimulation, implying that astrocytes were largely disengaged from cortical input in healthy tissue. In contrast, in HD model mice, spontaneous Ca(2+)signals were significantly reduced in frequency, duration, and amplitude, but astrocytes responded robustly to cortical stimulation with evoked Ca(2+)signals. These action-potential-dependent astrocyte Ca(2+)signals were mediated by neuronal glutamate release during cortical stimulation, accompanied by prolonged extracellular glutamate levels near astrocytes and tightly gated by Glt1 glutamate transporters. Moreover, dysfunctional Ca(2+)and glutamate signaling that was observed in HD model mice was largely, but not completely, rescued by astrocyte specific restoration of Kir4.1, emphasizing the important contributions of K(+)homeostatic mechanisms that are known to be reduced in HD model mice. Overall, our data show that astrocyte engagement in the corticostriatal circuit is markedly altered in HD. Such prodromal astrocyte dysfunctions may represent novel therapeutic targets in HD and other brain disorders.

SIGNIFICANCE STATEMENT: We report how early-onset astrocyte dysfunction without detectable astrogliosis drives disease-related processes in a mouse model of Huntington's disease (HD). The cellular mechanisms involve astrocyte homeostasis and signaling mediated by Kir4.1, Glt1, and Ca(2+) The data show that the rules for astrocyte engagement in a neuronal circuit are fundamentally altered in a brain disease caused by a known molecular defect and that fixing early homeostasis dysfunction remedies additional cellular deficits. Overall, our data suggest that key aspects of altered striatal function associated with HD may be triggered, at least in part, by dysfunctional astrocytes, thereby providing details of an emerging striatal microcircuit mechanism in HD. Such prodromal changes in astrocytes may represent novel therapeutic targets.

View Publication Page
02/13/19 | Dystroglycan is a scaffold for extracellular axon guidance decisions.
Lindenmaier LB, Parmentier N, Guo C, Tissir F, Wright KM
eLife. 2019 Feb 13;8:. doi: 10.7554/eLife.42143

Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events . These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.

View Publication Page
Truman LabRiddiford Lab
06/01/03 | E74 exhibits stage-specific hormonal regulation in the epidermis of the tobacco hornworm, manduca sexta.
Stilwell GE, Nelson CA, Weller J, Cui H, Hiruma K, Truman JW, Riddiford LM
Developmental Biology. 2003 Jun 1;258(1):76-90

The transcription factor E74 is one of the early genes induced by ecdysteroids during metamorphosis of Drosophila melanogaster. Here, we report the cloning and hormonal regulation of E74 from the tobacco hornworm, Manduca sexta (MsE74). MsE74 is 98% identical to that of D. melanogaster within the DNA-binding ETS domain of the protein. The 5’-isoform-specific regions of MsE74A and MsE74B share significantly lower sequence similarity (30-40%). Developmental expression by Northern blot analysis reveals that, during the 5th larval instar, MsE74B expression correlates with pupal commitment on day 3 and is induced to maximal levels within 12h by low levels of 20-hydroxyecdysone (20E) and repressed by physiologically relevant levels of juvenile hormone I (JH I). Immunocytochemical analysis shows that MsE74B appears in the epidermis before the 20E-induced Broad transcription factor that is correlated with pupal commitment (Zhou and Riddiford, 2001). In contrast, MsE74A is expressed late in the larval and the pupal molts when the ecdysteroid titer has declined to low levels and in the adult molt just as the ecdysteroid titer begins to decline. This change in timing during the adult molt appears not to be due to the absence of JH as there was no change during the pupal molt of allatectomized animals. When either 4th or 5th instar larval epidermis was explanted and subjected to hormonal manipulations, MsE74A induction occurred only after exposure to 20E followed by its removal. Thus, MsE74B appears to have a similar role at the onset of metamorphosis in Manduca as it does in Drosophila, whereas MsE74A is regulated differently at pupation in Manduca than at pupariation in Drosophila.

View Publication Page
Cardona Lab
11/01/06 | Early embryogenesis of planaria: a cryptic larva feeding on maternal resources.
Cardona A, Hartenstein V, Romero R
Development Genes & Evolution. 2006 Nov;216(11):667-81. doi: 10.1007/s00427-006-0094-3

The early planarian embryo presents a complete ciliated epidermis and a pharynx and feeds on maternal yolk cells. In this paper, we report on all the elements involved in the formation of such an autonomous embryo, which we name cryptic larva. First, we provide a description of the spherical and fusiform yolk cells and their relationship with the blastomeres, from the laying of the egg capsule up to their final fate in mid embryonic stages. Then, we describe the early cleavage and the subsequent development of the tissues of the cryptic larva, namely, the primary epidermis, the embryonic pharynx, and a new cell type, the star cells. Finally, we discuss the possibility that the cryptic larva either constitutes a vestigial larva or, more likely, is the evolutionary result of the competition between multiple embryos for the limited and shared maternal resources in the egg capsule.

View Publication Page
01/01/00 | Early retinal development in Drosophila.
Heberlein U, Treisman JE
Results and Problems in Cell Differentiation. 2000;31:37-50