Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4169 Publications

Showing 1391-1400 of 4169 results
07/20/24 | Encoding of cerebellar dentate neuronal activity during visual attention in rhesus macaques
Flierman NA, Koay SA, van Hoogstraten WS, Ruigrok TJ, Roelfsema PR, Badura A, De Zeeuw CI
bioRxiv. 2024 Jul 20:. doi: 10.1101/2024.07.18.604119

The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single unit DN neurons modulated spiking activity over the entire time-course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance and neural dynamics, we constructed a behavioral, an encoding and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Retrograde labeling of the recording location indicated that these neurons receive predominantly inputs from Purkinje cells in the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.

View Publication Page
Truman Lab
01/01/86 | Endocrine regulation of the form and function of axonal arbors during insect metamorphosis.
Levine RB, Truman JW, Linn D, Bate CM
The Journal of Neuroscienc : The Official Journal of the Society for Neuroscience. 1986 Jan;6(1):293-9

By discrete manipulation of the endocrine cues that control insect metamorphosis, it has been possible to examine the mechanisms governing the growth of neural processes during development. During the transition from larva to pupa in the hawkmoth, Manduca sexta, identified sensory neurons reorganize their central projections to evoke a new behavior–the gintrap reflex. Topical application of a juvenile hormone analog to the peripheral cell bodies of these sensory neurons during a critical period of development caused them to retain their larval commitment rather than undergo pupal development with the rest of the animal. The sensory neurons retained the larval arborization pattern within the pupal CNS and were unable to evoke the gin-trap reflex. Thus, the hormonal environment of the cell body is critical for controlling growth and synapse formation by distant axonal processes.

View Publication Page
02/11/09 | Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis.
Yu H, Yang JS, Wang J, Huang Y, Lee T
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2009 Feb 11;29(6):1904-14. doi: 10.1523/JNEUROSCI.5743-08.2009

Drosophila Down syndrome cell adhesion molecule (Dscam) can be variably spliced to encode 152,064 distinct single-pass transmembrane proteins. In addition to 19,008 possible ectodomains and two alternative transmembrane segments, it may carry endodomains containing or lacking exons 19 and 23. Here, we determine the role of Dscam endodomain diversity in neural development. Dscam with full-length endodomain is largely restricted to embryogenesis. In contrast, most Dscams lack exons 19 and 23 at postembryonic stages. As implicated from the expression patterns, removal of Dscam exon 19-containing variants disrupts wiring of embryonic neurons while silencing of Dscam transcripts lacking exon 19 or exon 23 effectively blocks postembryonic neuronal morphogenesis. Furthermore, compared with exon 19-containing Dscam, transgenic Dscam without exon 19 is more efficiently targeted to neurites and more potently suppresses axon bifurcation in Dscam mutant neurons. In sum, Dscam with or without exon 19 in its endodomain is used to govern different stage-specific neuronal morphogenetic processes, possibly due to differences in protein targeting.

View Publication Page
01/29/21 | Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration.
Janine J.G. Arts , Eike K. Mahlandt , Max L.B. Grönloh , Lilian Schimmel , Ivar Noordstra , Abraham C.I. van Steen , Simon Tol , Jos van Rijssel , Martijn A. Nolte , Marten Postma , Satya Khuon , John M. Heddleston , Eric Wait , Teng-Leong Chew , Mark Winter , Eloi Montanez , Joachim Goedhart , Jaap D. van Buul
bioRxiv. 2021 Jan 21:. doi: https://doi.org/10.1101/2021.01.18.427135

Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, though it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.

View Publication Page
08/25/21 | Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration.
Arts JJ, Mahlandt EK, Grönloh M, Schimmel L, Noordstra I, Gordon E, van Steen AC, Tol S, Walzog B, van Rijssel J, Nolte MA, Postma M, Khuon S, Heddleston JM, Wait E, Chew TL, Winter M, Montanez E, Goedhart J, van Buul JD
eLife. 2021 Aug 25;10:. doi: 10.7554/eLife.66074

Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, though it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.

View Publication Page
Svoboda LabPastalkova Lab
05/30/09 | Enemy avoidance task: a novel behavioral paradigm for assessing spatial avoidance of a moving subject.
Telensky P, Svoboda J, Pastalkova E, Blahna K, Bures J, Stuchlik A
Journal of Neuroscience Methods. 2009 May 30;180(1):29-33. doi: 10.1523/JNEUROSCI.3773-10.2011

Navigation with respect to moving goals represents a useful ability in the everyday life of animals. We have developed a novel behavioral paradigm, "enemy avoidance task", in which a laboratory rat (subject) was trained to avoid another rat (enemy), while searching for small pasta pellets dispensed onto an experimental arena. Whenever the distance between the two animals was smaller than 25 cm, the subject was given a mild electric footshock. The results have shown that rats are capable of avoiding another rat while exploring an environment. Therefore, the enemy avoidance task can be used in electrophysiological, lesion or neuropharmacological studies exploring neuronal substrate coding for egocentric and allocentric positions of an observed animal.

View Publication Page
03/25/05 | Engineering a selectable marker for hyperthermophiles.
Brouns SJ, Wu H, Akerboom J, Turnbull AP, de Vos WM, van der Oost J
The Journal of Biological Chemistry. 2005 Mar 25;280(12):11422-31. doi: 10.1074/jbc.M413623200

Limited thermostability of antibiotic resistance markers has restricted genetic research in the field of extremely thermophilic Archaea and bacteria. In this study, we used directed evolution and selection in the thermophilic bacterium Thermus thermophilus HB27 to find thermostable variants of a bleomycin-binding protein from the mesophilic bacterium Streptoalloteichus hindustanus. In a single selection round, we identified eight clones bearing five types of double mutated genes that provided T. thermophilus transformants with bleomycin resistance at 77 degrees C, while the wild-type gene could only do so up to 65 degrees C. Only six different amino acid positions were altered, three of which were glycine residues. All variant proteins were produced in Escherichia coli and analyzed biochemically for thermal stability and functionality at high temperature. A synthetic mutant resistance gene with low GC content was designed that combined four substitutions. The encoded protein showed up to 17 degrees C increased thermostability and unfolded at 85 degrees C in the absence of bleomycin, whereas in its presence the protein unfolded at 100 degrees C. Despite these highly thermophilic properties, this mutant was still able to function normally at mesophilic temperatures in vivo. The mutant protein was co-crystallized with bleomycin, and the structure of the binary complex was determined to a resolution of 1.5 A. Detailed structural analysis revealed possible molecular mechanisms of thermostabilization and enhanced antibiotic binding, which included the introduction of an intersubunit hydrogen bond network, improved hydrophobic packing of surface indentations, reduction of loop flexibility, and alpha-helix stabilization. The potential applicability of the thermostable selection marker is discussed.

View Publication Page
06/15/09 | Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates.
Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB
Journal of Immunology. 2009 Jun 15;182(12):7663-71. doi: 10.4049/jimmunol.0804182

The pH-dependent binding of Igs to the neonatal FcR (FcRn) plays a critical role in the in vivo homeostasis of IgGs. Modulating the interaction between Fc and FcRn through protein engineering is one method for improving the pharmacokinetics of therapeutic Abs. Recent studies disputed the direct relationship between increasing FcRn affinity and improved pharmacokinetic properties. In this work, we studied the pharmacokinetics of two human IgG1 Fc variants in cynomolgus monkey to further clarify the affinity-pharmacokinetic relationship. First, we report a number of novel Fc point mutations and combination variants, including some with primate-specific FcRn-binding improvements. By studying these variants along with some previously described variants across a wide range of affinities, we discovered a direct correlation of pH 6 affinity improvements with neutral pH improvements, suggesting that all of the tested variants exhibit similar pH dependency in FcRn binding. We then evaluated the pharmacokinetics of variants N434A and N434W, which, respectively, gave approximately 4- and 80-fold improvements in pH 6-binding affinity to both human and nonhuman primate FcRn. Surprisingly, clearance of N434W was similar to that of wild type. N434W is the first variant studied in primates that exhibits significant binding to FcRn at pH 7.4, and its clearance substantiates the principle that too much affinity improvement, i.e., beyond that of N434W, does not yield improved pharmacokinetics. In contrast, N434A exhibited a approximately 2-fold decrease in clearance in cynomolgus monkey, supporting the notion that modest increases in pH 6 FcRn affinity can result in improved pharmacokinetics in primates.

View Publication Page
11/30/21 | Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging.
Benaissa H, Ounoughi K, Aujard I, Fischer E, Goïame R, Nguyen J, Tebo AG, Li C, Le Saux T, Bertolin G, Tramier M, Danglot L, Pietrancosta N, Morin X, Jullien L, Gautier A
Nature Communications. 2021 Nov 30;12(1):6989. doi: 10.1038/s41467-021-27334-0

Biocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques.

View Publication Page
11/14/16 | Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells.
Hayer A, Shao L, Chung M, Joubert L, Yang HW, Tsai F, Bisaria A, Betzig E, Meyer T
Nature Cell Biology. 2016 Nov 14;18(12):1311-23. doi: 10.1038/ncb3438

The development and maintenance of tissues requires collective cell movement, during which neighbouring cells coordinate the polarity of their migration machineries. Here, we ask how polarity signals are transmitted from one cell to another across symmetrical cadherin junctions, during collective migration. We demonstrate that collectively migrating endothelial cells have polarized VE-cadherin-rich membrane protrusions, ‘cadherin fingers’, which leading cells extend from their rear and follower cells engulf at their front, thereby generating opposite membrane curvatures and asymmetric recruitment of curvature-sensing proteins. In follower cells, engulfment of cadherin fingers occurs along with the formation of a lamellipodia-like zone with low actomyosin contractility, and requires VE-cadherin/catenin complexes and Arp2/3-driven actin polymerization. Lateral accumulation of cadherin fingers in follower cells precedes turning, and increased actomyosin contractility can initiate cadherin finger extension as well as engulfment by a neighbouring cell, to promote follower behaviour. We propose that cadherin fingers serve as guidance cues that direct collective cell migration.

View Publication Page