Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 1521-1530 of 3945 results
07/01/03 | Functional properties of a brain-specific NH2-terminally spliced modulator of Kv4 channels.
Boland LM, Jiang M, Lee SY, Fahrenkrug SC, Harnett MT, O’Grady SM
American Journal of Physiology. Cell Physiology. 2003 Jul;285(1):C161-70. doi: 10.1152/ajpcell.00416.2002

Kv4/K channel-interacting protein (KChIP) potassium channels are a major class of rapidly inactivating K channels in brain and heart. Considering the importance of alternative splicing to the quantitative features of KChIP gating modulation, a previously uncharacterized splice form of KChIP1 was functionally characterized. The KChIP1b splice variant differs from the previously characterized KChIP1a splice form by the inclusion of a novel amino-terminal region that is encoded by an alternative exon that is conserved in mouse, rat, and human genes. The expression of KChIP1b mRNA was high in brain but undetectable in heart or liver by RT-PCR. In cerebellar tissue, KChIP1b and KChIP1a transcripts were expressed at nearly equal levels. Coexpression of KChIP1b or KChIP1a with Kv4.2 channels in oocytes slowed K current decay and destabilized open-inactivated channel gating. Like other KChIP subunits, KChIP1b increased Kv4.2 current amplitude and KChIP1b also shifted Kv4.2 conductance-voltage curves by -10 mV. The development of Kv4.2 channel inactivation accessed from closed gating states was faster with KChIP1b coexpression. Deletion of the novel amino-terminal region in KChIP1b selectively altered the subunit’s modulation of Kv4.2 closed inactivation gating. The role of the KChIP1b NH2-terminal region was further confirmed by direct comparison of the properties of the NH2-terminal deletion mutant and the KChIP1a subunit, which is encoded by a transcript that lacks the novel exon. The features of KChIP1b modulation of Kv4 channels are likely to be conserved in mammals and demonstrate a role for the KChIP1 NH2-terminal region in the regulation of closed inactivation gating.

View Publication Page
07/31/17 | Functional regulatory evolution outside of the minimal even-skipped stripe 2 enhancer.
Crocker J, Stern DL
Development (Cambridge, England). 2017 Jul 31:. doi: 10.1242/dev.149427

Transcriptional enhancers are regions of DNA that drive precise patterns of gene expression. While many studies have elucidated how individual enhancers can evolve, most of this work has focused on what are called "minimal" enhancers, the smallest DNA regions that drive expression that approximates an aspect of native gene expression. Here we explore how the Drosophila erecta even-skipped (eve) locus has evolved by testing its activity in the divergent D. melanogaster genome. We found, as has been reported previously, that the D. erecta eve stripe 2 enhancer (eveS2) fails to drive appreciable expression in D. melanogaster (1). However, we found that a large transgene carrying the entire D. erecta eve locus drives normal eve expression, including in stripe 2. We performed a functional dissection of the region upstream of the D. erecta eveS2 region and found multiple Zelda motifs that are required for normal expression. Our results illustrate how sequences outside of minimal enhancer regions can evolve functionally through mechanisms other than changes in transcription factor binding sites that drive patterning.

View Publication Page
05/27/09 | Functional Role of a Specialized Class of Spinal Commissural Inhibitory Neurons during Fast Escapes in Zebrafish
Chie Satou , Yukiko Kimura , Tsunehiko Kohashi , Kazuki Horikawa , Hiroyuki Takeda , Yoichi Oda , Shin-ichi Higashijima
Journal of Neuroscience. 05/2009;29:6780–6793. doi: 10.1523/JNEUROSCI.0801-09.2009

In teleost fish, the Mauthner (M) cell, a large reticulospinal neuron in the brainstem, triggers escape behavior. Spinal commissural inhibitory interneurons that are electrotonically excited by the M-axon have been identified, but the behavioral roles of these neurons have not yet been addressed. Here, we studied these neurons, named CoLo (commissural local), in larval zebrafish using an enhancer-trap line in which the entire population of CoLos was visualized by green fluorescent protein. CoLos were present at one cell per hemi-segment. Electrophysiological recordings showed that an M-spike evoked a spike in CoLos via electrotonic transmission and that CoLos made monosynaptic inhibitory connections onto contralateral primary motoneurons, consistent with the results in adult goldfish. We further showed that CoLos were active only during escapes. We examined the behavioral roles of CoLos by investigating escape behaviors in CoLo-ablated larvae. The results showed that the escape behaviors evoked by sound/vibration stimuli were often impaired with a reduced initial bend of the body, indicating that CoLos play important roles in initiating escapes. We obtained several lines of evidence that strongly suggested that the impaired escapes occurred during bilateral activation of the M-cells: in normal larvae, CoLo-mediated inhibitory circuits enable animals to perform escapes even in these occasions by silencing the output of the slightly delayed firing of the second M-cell. This study illustrates (1) a clear example of the behavioral role of a specialized class of interneurons and (2) the capacity of the spinal circuits to filter descending commands and thereby produce the appropriate behavior.

View Publication Page
01/18/23 | Functional specialization and structured representations for space and time in prefrontal cortex
Claudia Böhm , Albert K. Lee
bioRxiv. 2023 Jan 18:. doi: 10.1101/2023.01.16.524214

Individual neurons in prefrontal cortex – a key brain area involved in cognitive functions – are selective for variables such as space or time, as well as more cognitive aspects of tasks, such as learned categories. Many neurons exhibit mixed selectivity, that is, they show selectivity for multiple variables. A fundamental question is whether neurons are functionally specialized for particular variables and how selectivity for different variables intersects across the population. Here, we analyzed neural correlates of space and time in rats performing a navigational task with two behaviorally important categories – starts and goals. Using simultaneous recordings of many medial prefrontal cortex (mPFC) neurons during behavior, we found that population codes for elapsed time were invariant to different locations within categories, and subsets of neurons had functional preferences for time or space across categories. Thus, mPFC exhibits structured selectivity, which may facilitate complex behaviors by efficiently generating informative representations of multiple variables.

View Publication Page
08/29/23 | Functionalization and higher-order organization of liposomes with DNA nanostructures.
Zhang Z, Feng Z, Zhao X, Jean D, Yu Z, Chapman ER
Nature Communications. 2023 Aug 29;14(1):5256. doi: 10.1038/s41467-023-41013-2

Small unilamellar vesicles (SUVs) are indispensable model membranes, organelle mimics, and drug and vaccine carriers. However, the lack of robust techniques to functionalize or organize preformed SUVs limits their applications. Here we use DNA nanostructures to coat, cluster, and pattern sub-100-nm liposomes, generating distance-controlled vesicle networks, strings and dimers, among other configurations. The DNA coating also enables attachment of proteins to liposomes, and temporal control of membrane fusion driven by SNARE protein complexes. Such a convenient and versatile method of engineering premade vesicles both structurally and functionally is highly relevant to bottom-up biology and targeted delivery.

View Publication Page
11/23/21 | Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance.
Smith PR, Loerch S, Kunder N, Stanowick AD, Lou T, Campbell ZT
Nature Communications. 2021 Nov 23;12(1):6789. doi: 10.1038/s41467-021-27160-4

Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.

View Publication Page
01/10/20 | Fundamental law of memory recall.
Naim M, Katkov M, Romani S, Tsodyks M
Physical Review Letters. 2020 Jan 10;124(1):018101. doi: 10.1103/PhysRevLett.124.018101

Human memory appears to be fragile and unpredictable. Free recall of random lists of words is a standard paradigm used to probe episodic memory. We proposed an associative search process that can be reduced to a deterministic walk on random graphs defined by the structure of memory representations. The corresponding graph model can be solved analytically, resulting in a novel parameter-free prediction for the average number of memory items recalled (R) out of M items in memory: R=sqrt[3πM/2]. This prediction was verified with a specially designed experimental protocol combining large-scale crowd-sourced free recall and recognition experiments with randomly assembled lists of words or common facts. Our results show that human memory can be described by universal laws derived from first principles.

View Publication Page
03/29/23 | Fundamental law underlying predictive remapping
Adeyefa-Olasupo I
Physical Review Research. 2023 Mar 29;5(1):. doi: 10.1103/PhysRevResearch.5.013214

Predictive remapping (PRE )—the ability of cells in retinotopic brain structures to transiently exhibit spatiotemporal shifts beyond the spatial extent of their classical anatomical receptive fields—has been proposed as a primary mechanism that stabilizes an organism’s percept of the visual world around the time of a saccadic eye movement. Despite the well-documented effects of PRE , a biologically plausible mathematical framework that specifies a fundamental law and the functional neural architecture that actively mediates this ubiquitous phenomenon does not exist. We introduce the Newtonian model of PRE , where each modular component of PRE manifests as three temporally overlapping forces: centripetal ( fC ), convergent ( fP ), and translational ( fT ), that perturb retinotopic cells from their equilibrium extent. The resultant and transient influences of these forces fC + fP + fT gives rise to a neuronal force field that governs the spatiotemporal dynamics of PRE . This neuronal force field fundamentally obeys an inverse-distance law PRE ∝ 1 r1.6 , akin to Newton’s law of universal gravitation [I. Newton, Newton’s Principia: The Mathematical Principles of Natural Philosophy (Geo. P. Putnam, New-York, 1850)] and activates retinotopic elastic fields elϕ’s. We posit that elϕ’s are transient functional neural structures that are self-generated by visual systems during active vision and approximate the sloppiness (or degrees of spatial freedom) within which receptive fields are allowed to shift, while ensuring that retinotopic organization does not collapse. The predictions of this general model are borne out by the spatiotemporal changes in visual sensitivity to probe stimuli in human subjects around the time of an eye movement and qualitatively match neural sensitivity signatures associated with predictive shifts in the receptive fields of cells in premotor and higher-order retinotopic brain structures. The introduction of this general model opens the search for possible biophysical implementations and provides experimentalists with a simple, elegant, yet powerful mathematical framework they can now use to generate experimentally testable predictions across a range of biological systems.

View Publication Page
11/01/11 | Fuse or die: Shaping mitochondrial fate during starvation.
Rambold AS, Kostelecky B, Lippincott-Schwartz J
Communicative & integrative biology. 2011 Nov 1;4(6):752-4

Mitochondria continuously change their shape and thereby influence different cellular processes like cell death or development. Recently, we showed that during starvation mitochondria fuse into a highly connected network. The change in mitochondrial shape was dependent on inactivation of the fission protein Drp1, through targeting of two different phosphorylation sites. This rapid inhibition of mitochondrial fission led to unopposed fusion, protecting mitochondria from starvation-induced degradation and enabling the cell to survive nutrient scarce conditions.

View Publication Page
Gonen Lab
01/01/00 | Galectin-3 is associated with the plasma membrane of lens fiber cells.
Gonen T, Donaldson P, Kistler J
Investigative Ophthalmology & Visual Science. 2000 Jan;41(1):199-203

PURPOSE: To discover proteins that have the potential to contribute to the tight packing of fiber cells in the lens.

METHODS: Crude fiber cell membranes were isolated from ovine lens cortex. Proteins were separated by two-dimensional gel electrophoresis, and selected protein spots identified by micro-sequencing. The identification of galectin-3 was confirmed by immunoblotting with a specific antibody. The association of galectin-3 with the fiber cell plasma membrane was investigated using immunofluorescence microscopy, solubilization trials with selected reagents, and immunoprecipitation to identify candidate ligands.

RESULTS: A cluster of three protein spots with an apparent molecular weight of 31,000 and isoelectric points ranging between 7 and 8.5 were resolved and identified as galectin-3. This protein was associated peripherally with the fiber cell plasma membrane and interacted with MP20, an abundant intrinsic membrane protein that had been identified previously as a component of membrane junctions between fiber cells.

CONCLUSIONS: The detection of galectin-3 in the lens is a novel result and adds to the growing list of lens proteins with adhesive properties. Its location at the fiber cell membrane and its association with the junction-forming MP20 is consistent with a potential role in the development or maintenance of the tightly packed lens tissue architecture.

View Publication Page