Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4106 Publications

Showing 1781-1790 of 4106 results
05/23/22 | Hormone-controlled changes in the differentiation state of post-mitotic neurons.
Lai Y, Miyares RL, Liu L, Chu S, Lee T, Yu H
Current Biology. 2022 May 23;32(10):2341-2348. doi: 10.1016/j.cub.2022.04.027

While we think of neurons as having a fixed identity, many show spectacular plasticity. Metamorphosis drives massive changes in the fly brain; neurons that persist into adulthood often change in response to the steroid hormone ecdysone. Besides driving remodeling, ecdysone signaling can also alter the differentiation status of neurons. The three sequentially born subtypes of mushroom body (MB) Kenyon cells (γ, followed by α'/β', and finally α/β) serve as a model of temporal fating. γ neurons are also used as a model of remodeling during metamorphosis. As γ neurons are the only functional Kenyon cells in the larval brain, they serve the function of all three adult subtypes. Correspondingly, larval γ neurons have a similar morphology to α'/β' and α/β neurons-their axons project dorsally and medially. During metamorphosis, γ neurons remodel to form a single medial projection. Both temporal fate changes and defects in remodeling therefore alter γ-neuron morphology in similar ways. Mamo, a broad-complex, tramtrack, and bric-à-brac/poxvirus and zinc finger (BTB/POZ) transcription factor critical for temporal specification of α'/β' neurons, was recently described as essential for γ remodeling. In a previous study, we noticed a change in the number of adult Kenyon cells expressing γ-specific markers when mamo was manipulated. These data implied a role for Mamo in γ-neuron fate specification, yet mamo is not expressed in γ neurons until pupariation, well past γ specification. This indicates that mamo has a later role in ensuring that γ neurons express the correct Kenyon cell subtype-specific genes in the adult brain.

View Publication Page
03/13/25 | HortaCloud: An Open and Collaborative Platform for Whole Brain Neuronal Reconstructions
Rokicki K, Schauder D, Olbris DJ, Goina C, Clements J, Edson P, Kawase T, Svirskas R, Arshadi C, Feng D, Chandrashekar J, Ferreira TA, MouseLight Project Team
bioRxiv. 2025 Mar 13:. doi: 10.1101/2025.03.13.642887

HortaCloud is a cloud-based, open-source platform designed to facilitate the collaborative reconstruction of long-range projection neurons from whole-brain light microscopy data. By providing virtual environments directly within the cloud, it eliminates the need for costly and time-consuming data downloads, allowing researchers to work efficiently with terabyte- scale volumetric datasets. Standardization of computational resources in the cloud make deployment easier and more predictable. The pay-as-you-go cloud model reduces adoption barriers by eliminating upfront investments in expensive hardware. Finally, HortaCloud’s decentralized architecture enables global collaboration between researchers and between institutions.

View Publication Page
05/04/24 | Host ZCCHC3 blocks HIV-1 infection and production by a dual mechanism
Binbin Yi , Yuri L Tanaka , Hidetaka Kosako , Erika P Butlertanaka , Prabuddha Sengupta , Jennifer Lippincott-Schwartz , Akatsuki Saito , Shige H. Yoshimura
iScience. 05/2024:. doi: 10.1101/2023.06.14.544911

Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. While anti-human immunodeficiency virus type 1 (HIV-1) host restriction factors have been identified, most of them are antagonized by viral proteins. This has severely hindered their development in anti-HIV-1 therapy. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel anti-HIV-1 factor that is not antagonized by viral proteins. ZCCHC3 suppresses production of HIV-1 and other retroviruses. We show that ZCCHC3 acts by binding to Gag nucleocapsid protein via zinc-finger motifs. This prevents interaction between the Gag nucleocapsid protein and viral genome and results in production of genome-deficient virions. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. Such a dual antiviral mechanism is distinct from that of any other known host restriction factors. Therefore, ZCCHC3 is a novel potential target in anti-HIV-1 therapy.

View Publication Page
06/25/24 | Hot-Distance: Combining One-Hot and Signed Distance Embeddings for Segmentation
Marwan Zouinkhi , Jeff L. Rhoades , Aubrey V. Weigel
arXiv. 2024 Jun 25:2406.17936. doi: 10.48550/arXiv.2406.17936

Machine learning models are only as good as the data to which they are fit. As such, it is always preferable to use as much data as possible in training models. What data can be used for fitting a model depends a lot on the formulation of the task. We introduce Hot-Distance, a novel segmentation target that incorporates the strength of signed boundary distance prediction with the flexibility of one-hot encoding, to increase the amount of usable training data for segmentation of subcellular structures in focused ion beam scanning electron microscopy (FIB-SEM).

View Publication Page
Riddiford Lab
12/01/12 | How does juvenile hormone control insect metamorphosis and reproduction?
Riddiford LM
General and Comparative Endocrinology. 2012 Dec 1;179(3):477-84. doi: 10.1016/j.ygcen.2012.06.001

In insects juvenile hormone (JH) regulates both metamorphosis and reproduction. This lecture focuses on our current understanding of JH action at the molecular level in both of these processes based primarily on studies in the tobacco hornworm Manduca sexta, the flour beetle Tribolium castaneum, the mosquito Aedes aegypti, and the fruit fly Drosophila melanogaster. The roles of the JH receptor complex and the transcription factors that it regulates during larval molting and metamorphosis are summarized. Also highlighted are the intriguing interactions of the JH and insulin signaling pathways in both imaginal disc development and vitellogenesis. Critical actions of JH and its receptor in the timing of maturation of the adult optic lobe and of female receptivity in Drosophila are also discussed.

View Publication Page
02/20/24 | How microscopic epistasis and clonal interference shape the fitness trajectory in a spin glass model of microbial long-term evolution
Nicholas M. Boffi , Yipei Guo , Chris H. Rycroft , Ariel Amir
eLife. 2024 Feb 20:. doi: 10.7554/eLife.87895

The adaptive dynamics of evolving microbial populations takes place on a complex fitness landscape generated by epistatic interactions. The population generically consists of multiple competing strains, a phenomenon known as clonal interference. Microscopic epistasis and clonal interference are central aspects of evolution in microbes, but their combined effects on the functional form of the population’s mean fitness are poorly understood. Here, we develop a computational method that resolves the full microscopic complexity of an evolving population subject to a standard serial dilution protocol. We find that stronger microscopic epistasis gives rise to fitness trajectories with slower growth independent of the number of competing strains, which we quantify with power-law fits and understand mechanistically via a random walk model that neglects dynamical correlations between genes. We show that clonal interference leads to fitness trajectories with faster growth (in functional form) without microscopic epistasis, but has a negligible effect when epistasis is sufficiently strong, indicating that the role of clonal interference depends intimately on the underlying fitness landscape.

View Publication Page
01/09/25 | How short peptides can disassemble ultra‐stable tau fibrils extracted from Alzheimer’s disease brain by a strain‐relief mechanismAbstractBackgroundMethodResultConclusion
Hou K, Ge P, Sawaya MR, Dolinsky JL, Yang Y, Jiang YX, Lutter L, Boyer D, Cheng X, Pi J, Zhang J, Lu J, Yang S, Yu Z, Feigon J, Eisenberg DS
Alzheimer's & Dementia. 01/2025;20(S6):. doi: 10.1002/alz.v20.S610.1002/alz.085001

Background

Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer’s disease (AD). Previously we found that in vitro the D-peptide D-TLKIVWC fragments tau fibrils from AD brains (AD-tau) into benign segments, whereas its six-residue analog D-TLKIVW cannot. However, the underlying fragmentation mechanism remains unknown, preventing the further development of this type of drug candidate for AD.

Method

To understand the necessity of the cysteine residue of D-TLKIVWC in fragmenting AD-tau, we designed a series of peptides of sequence D-TLKIVWX varying only at the seventh residue, X. To better understand the fragmentation process of AD-tau, we conducted a time-course dot blot and EM experiment. We determined the structures of D-TLKIVWX amyloid-like fibrils by atomic force microscopy and cryo-electron microscopy. We studied the complexes of D-TLKIVWX (X = I, S, R) with AD-tau by cryo-electron microscopy and confirmed the binding site between D-TLKIVWX and Tau through NMR.

Result

These D-TLKIVWX candidates showed various efficacies in fragmenting AD-tau in vitro, in which X = Ile was the best performer. From electron microscopy, we discovered that D-TLKIVWX peptides form amyloid-like fibrils themselves, and from atomic force microscopy we learned that these fibrils have a right-handed helical twist, in contrast to the left-handed helical twist of AD-tau. From cryo-EM we learned that D-TLKIVWX protofilaments bind to tau fibrils of opposing twist.

Conclusion

We find that the amyloid-like, fibril-forming property of D-TLKIVWX contributes to the fragmentation of AD-tau fibrils. We propose the strain-relief mechanism of fragmentation and believe the fragmentation of AD-tau fibrils is driven by the release of torsion in D-TLKIVWX protofilaments.

View Publication Page
06/15/19 | How to design a chalk talk-the million dollar sales pitch
Snapp EL
Molecular Biology of the Cell. 2019 Jun 15;30(13):1575-1577. doi: 10.1091/mbc.E19-01-0007

Each faculty recruiting season, many postdocs ask, "What is a chalk talk?" The chalk talk is many things-a sales pitch, a teaching demonstration, a barrage of questions, and a description of a future research program. The chalk talk is arguably the most important component of a faculty search interview. Yet few postdocs or grad students receive training or practice in giving a chalk talk. In the following essay, I'll cover the basics of chalk talk design and preparation.

View Publication Page
12/21/05 | How to find decision makers in neural networks.
Koulakov AA, Rinberg DA, Tsigankov DN
Biological Cybernetics. 2005 Dec;93(6):447-62. doi: 10.1523/JNEUROSCI.3613-08.2008

Nervous systems often face the problem of classifying stimuli and making decisions based on these classifications. The neurons involved in these tasks can be characterized as sensory or motor, according to their correlation with sensory stimulus or motor response. In this study we define a third class of neurons responsible for making perceptual decisions. Our mathematical formalism enables the weighting of neuronal units according to their contribution to decision making, thus narrowing the field for more detailed studies of underlying mechanisms. We develop two definitions of a contribution to decision making. The first definition states that decision making activity can be found at the points of emergence for behavioral correlations in the system. The second definition involves the study of propagation of noise in the network. The latter definition is shown to be equivalent to the first one in the cases when they can be compared. Our results suggest a new approach to analyzing decision making networks.

View Publication Page