Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 1781-1790 of 3945 results
Wu Lab
05/20/14 | Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres.
Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H, Wei D, Dahan M, Wu C
eLife. 2014 May 20;3:e02203. doi: 10.7554/eLife.02203

The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.DOI: http://dx.doi.org/10.7554/eLife.02203.001.

View Publication Page
Branson LabFreeman Lab
10/22/15 | Imaging the neural basis of locomotion.
Branson K, Freeman J
Cell. 2015 Oct 22;163(3):541-2. doi: 10.1016/j.cell.2015.10.014

To investigate the fundamental question of how nervous systems encode, organize, and sequence behaviors, Kato et al. imaged neural activity with cellular resolution across the brain of the worm Caenorhabditis elegans. Locomotion behavior seems to be continuously represented by cyclical patterns of distributed neural activity that are present even in immobilized animals.

View Publication Page
01/01/12 | Imaging the post-fusion release and capture of a vesicle membrane protein.
Sochacki KA, Larson BT, Sengupta DC, Daniels MP, Shtengel G, Hess HF, Taraska JW
Nature Communications. 2012;3:1154. doi: 10.1038/ncomms2158

The molecular mechanism responsible for capturing, sorting and retrieving vesicle membrane proteins following triggered exocytosis is not understood. Here we image the post-fusion release and then capture of a vesicle membrane protein, the vesicular acetylcholine transporter, from single vesicles in living neuroendocrine cells. We combine these measurements with super-resolution interferometric photo-activation localization microscopy and electron microscopy, and modelling to map the nanometer-scale topography and architecture of the structures responsible for the transporter’s capture following exocytosis. We show that after exocytosis, the transporter rapidly diffuses into the plasma membrane, but most travels only a short distance before it is locally captured over a dense network of membrane-resident clathrin-coated structures. We propose that the extreme density of these structures acts as a short-range diffusion trap. They quickly sequester diffusing vesicle material and limit its spread across the membrane. This system could provide a means for clathrin-mediated endocytosis to quickly recycle vesicle proteins in highly excitable cells.

View Publication Page
11/26/13 | Imaging the transcriptome.
Lionnet T
Molecular Systems Biology. 2013 Nov 26;9:710. doi: 10.1038/msb.2013.67
Tjian LabSinger LabTranscription Imaging
02/03/09 | Imaging transcription in living cells.
Darzacq X, Yao J, Larson DR, Causse SZ, Bosanac L, de Turris V, Ruda VM, Lionnet T, Zenklusen D, Guglielmi B, Tjian R, Singer RH
Annual Review of Biophysics. 2009 Feb 3;38:173-96. doi: 10.1073/pnas.1100640108

The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding.

View Publication Page
01/16/16 | Imaging transcription: past, present, and future.
Coleman RA, Liu Z, Darzacq X, Tjian R, Singer RH, Lionnet T
Cold Spring Harbor Symposia on Quantitative Biology. 2015;80:1-8. doi: 10.1101/sqb.2015.80.027201

Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single-molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation.

View Publication Page
Singer Lab
11/01/12 | Imaging translation in single cells using fluorescent microscopy.
Chao JA, Yoon YJ, Singer RH
Cold Spring Harbor Perspectives in Biology. 2012 Nov;4(11):. doi: 10.1101/cshperspect.a012310

The regulation of translation provides a mechanism to control not only the abundance of proteins, but also the precise time and subcellular location that they are synthesized. Much of what is known concerning the molecular basis for translational control has been gleaned from experiments (e.g., luciferase assays and polysome analysis) that measure average changes in the protein synthesis of a population of cells, however, mechanistic insights can be obscured in ensemble measurements. The development of fluorescent microscopy techniques and reagents has allowed translation to be studied within its cellular context. Here we highlight recent methodologies that can be used to study global changes in protein synthesis or regulation of specific mRNAs in single cells. Imaging of translation has provided direct evidence for local translation of mRNAs at synapses in neurons and will become an important tool for studying translational control.

View Publication Page
11/01/10 | Imaging: visualizing the possibilities.
Lippincott-Schwartz J
Journal of cell science. 2010 Nov 1;123(Pt 21):3619-20. doi: 10.1242/jcs081539
10/28/23 | Imagining the future of optical microscopy: everything, everywhere, all at once.
Balasubramanian H, Hobson CM, Chew T, Aaron JS
Communications Biology. 2023 Oct 28;6(1):1096. doi: 10.1038/s42003-023-05468-9

The optical microscope has revolutionized biology since at least the 17 Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.

View Publication Page
11/15/12 | ImgLib2--generic image processing in Java.
Pietzsch T, Preibisch S, Tomancak P, Saalfeld S
Bioinformatics. 2012 Nov 15;28(22):3009-11. doi: 10.1093/bioinformatics/bts543

SUMMARY: ImgLib2 is an open-source Java library for n-dimensional data representation and manipulation with focus on image processing. It aims at minimizing code duplication by cleanly separating pixel-algebra, data access and data representation in memory. Algorithms can be implemented for classes of pixel types and generic access patterns by which they become independent of the specific dimensionality, pixel type and data representation. ImgLib2 illustrates that an elegant high-level programming interface can be achieved without sacrificing performance. It provides efficient implementations of common data types, storage layouts and algorithms. It is the data model underlying ImageJ2, the KNIME Image Processing toolbox and an increasing number of Fiji-Plugins.

AVAILABILITY: ImgLib2 is licensed under BSD. Documentation and source code are available at http://imglib2.net and in a public repository at https://github.com/imagej/imglib.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online.

CONTACT: saalfeld@mpi-cbg.de

View Publication Page