Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3947 Publications

Showing 3031-3040 of 3947 results
12/02/04 | Search for computational modules in the C. elegans brain.
Reigl M, Alon U, Chklovskii DB
BMC Biology. 2004 Dec 2;2:25. doi: 10.1016/j.tins.2005.05.006

Does the C. elegans nervous system contain multi-neuron computational modules that perform stereotypical functions? We attempt to answer this question by searching for recurring multi-neuron inter-connectivity patterns in the C. elegans nervous system’s wiring diagram.

View Publication Page
03/01/07 | Search for fMRI BOLD signals in networks of spiking neurons.
Amit DJ, Romani S
European Journal of Neuroscience. 2007 Mar;25(6):1882-92. doi: 10.1111/j.1460-9568.2007.05408.x

In a recent experiment, functional magnetic resonance imaging blood oxygen level-dependent (fMRI BOLD) signals were compared in different cortical areas (primary-visual and associative), when subjects were required covertly to name images in two protocols: sequences of images, with and without intervening delays. The amplitude of the BOLD signal in protocols with delay was found to be closer to that without delays in associative areas than in primary areas. The present study provides an exploratory proposal for the identification of the neural activity substrate of the BOLD signal in quasi-realistic networks of spiking neurons, in networks sustaining selective delay activity (associative) and in networks responsive to stimuli, but whose unique stationary state is one of spontaneous activity (primary). A variety of observables are 'recorded' in the network simulations, applying the experimental stimulation protocol. The ratios of the candidate BOLD signals, in the two protocols, are compared in networks with and without delay activity. There are several options for recovering the experimental result in the model networks. One common conclusion is that the distinguishing factor is the presence of delay activity. The effect of NMDAr is marginal. The ultimate quantitative agreement with the experiment results depends on a distinction of the baseline signal level from its value in delay-period spontaneous activity. This may be attributable to the subjects' attention. Modifying the baseline results in a quantitative agreement for the ratios, and provided a definite choice of the candidate signals. The proposed framework produces predictions for the BOLD signal in fMRI experiments, upon modification of the protocol presentation rate and the form of the response function.

View Publication Page
Gonen Lab
08/01/11 | Secretins: dynamic channels for protein transport across membranes.
Korotkov KV, Gonen T, Hol WG
Trends in Biochemical Sciences. 2011 Aug;36(8):433-43. doi: 10.1016/j.tibs.2011.04.002

Secretins form megadalton bacterial-membrane channels in at least four sophisticated multiprotein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion-system partner proteins, and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and it is now recognized that features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other. Secretins might also play a key role in the biogenesis of their cognate secretion systems.

View Publication Page
Sternson Lab
07/27/20 | Seeing the forest for the trees in obesity.
Sternson SM
Nature Metabolism. 2020 Jul 27:. doi: 10.1038/s42255-020-0259-9
Simpson Lab
02/01/10 | Segmentation of center brains and optic lobes in 3D confocal images of adult fruit fly brains.
Lam SC, Ruan Z, Zhao T, Long F, Jenett A, Simpson J, Myers EW, Peng H
Methods. 2010 Feb;50(2):63-9. doi: 10.1016/j.ymeth.2009.08.004

Automatic alignment (registration) of 3D images of adult fruit fly brains is often influenced by the significant displacement of the relative locations of the two optic lobes (OLs) and the center brain (CB). In one of our ongoing efforts to produce a better image alignment pipeline of adult fruit fly brains, we consider separating CB and OLs and align them independently. This paper reports our automatic method to segregate CB and OLs, in particular under conditions where the signal to noise ratio (SNR) is low, the variation of the image intensity is big, and the relative displacement of OLs and CB is substantial. We design an algorithm to find a minimum-cost 3D surface in a 3D image stack to best separate an OL (of one side, either left or right) from CB. This surface is defined as an aggregation of the respective minimum-cost curves detected in each individual 2D image slice. Each curve is defined by a list of control points that best segregate OL and CB. To obtain the locations of these control points, we derive an energy function that includes an image energy term defined by local pixel intensities and two internal energy terms that constrain the curve’s smoothness and length. Gradient descent method is used to optimize this energy function. To improve both the speed and robustness of the method, for each stack, the locations of optimized control points in a slice are taken as the initialization prior for the next slice. We have tested this approach on simulated and real 3D fly brain image stacks and demonstrated that this method can reasonably segregate OLs from CBs despite the aforementioned difficulties.

View Publication Page
05/21/16 | Segmenting and Tracking Multiple Dividing Targets Using ilastik.
Haubold C, Schiegg M, Kreshuk A, Berg S, Koethe U, Hamprecht FA
Advances in anatomy, embryology, and cell biology. 2016 May 21;219:199-229. doi: 10.1007/978-3-319-28549-8_8

Tracking crowded cells or other targets in biology is often a challenging task due to poor signal-to-noise ratio, mutual occlusion, large displacements, little discernibility, and the ability of cells to divide. We here present an open source implementation of conservation tracking (Schiegg et al., IEEE international conference on computer vision (ICCV). IEEE, New York, pp 2928-2935, 2013) in the ilastik software framework. This robust tracking-by-assignment algorithm explicitly makes allowance for false positive detections, undersegmentation, and cell division. We give an overview over the underlying algorithm and parameters, and explain the use for a light sheet microscopy sequence of a Drosophila embryo. Equipped with this knowledge, users will be able to track targets of interest in their own data.

View Publication Page
12/30/05 | Segregation of the brain into gray and white matter: a design minimizing conduction delays.
Wen Q, Chklovskii DB
PLoS Computational Biology. 2005 Dec;1(7):e78. doi: 10.1371/journal.pcbi.1001066

A ubiquitous feature of the vertebrate anatomy is the segregation of the brain into white and gray matter. Assuming that evolution maximized brain functionality, what is the reason for such segregation? To answer this question, we posit that brain functionality requires high interconnectivity and short conduction delays. Based on this assumption we searched for the optimal brain architecture by comparing different candidate designs. We found that the optimal design depends on the number of neurons, interneuronal connectivity, and axon diameter. In particular, the requirement to connect neurons with many fast axons drives the segregation of the brain into white and gray matter. These results provide a possible explanation for the structure of various regions of the vertebrate brain, such as the mammalian neocortex and neostriatum, the avian telencephalon, and the spinal cord.

View Publication Page
07/22/10 | Segregation of yeast nuclear pores.
Khmelinskii A, Keller PJ, Lorenz H, Schiebel E, Knop M
Nature. 2010 Jul 22;466:E1. doi: 10.1038/nature09255

During mitosis in Saccharomyces cerevisiae, senescence factors such as extrachromosomal ribosomal DNA circles (ERCs) are retained in the mother cell and excluded from the bud/daughter cell. Shcheprova et al. proposed a model suggesting segregation of ERCs through their association with nuclear pore complexes (NPCs) and retention of preexisting NPCs in the mother cell during mitosis. However, this model is inconsistent with previous data and we demonstrate here that NPCs do efficiently migrate from the mother into the bud. Therefore, binding to NPCs does not seem to explain the retention of ERCs in the mother cell.

View Publication Page
Sternson LabLooger LabLavis Lab
03/27/12 | Selective esterase-ester pair for targeting small molecules with cellular specificity.
Tian L, Yang Y, Wysocki LM, Arnold AC, Hu A, Ravichandran B, Sternson SM, Looger LL, Lavis LD
Proceedings of the National Academy of Sciences of the United States of America. 2012 Mar 27;109:4756-61. doi: 10.1073/pnas.1111943109

Small molecules are important tools to measure and modulate intracellular signaling pathways. A longstanding limitation for using chemical compounds in complex tissues has been the inability to target bioactive small molecules to a specific cell class. Here, we describe a generalizable esterase-ester pair capable of targeted delivery of small molecules to living cells and tissue with cellular specificity. We used fluorogenic molecules to rapidly identify a small ester masking motif that is stable to endogenous esterases, but is efficiently removed by an exogenous esterase. This strategy allows facile targeting of dyes and drugs in complex biological environments to label specific cell types, illuminate gap junction connectivity, and pharmacologically perturb distinct subsets of cells. We expect this approach to have general utility for the specific delivery of many small molecules to defined cellular populations.

View Publication Page
Truman LabCardona Lab
07/12/16 | Selective inhibition mediates the sequential recruitment of motor pools.
Zwart MF, Pulver SR, Truman JW, Fushiki A, Cardona A, Landgraf M
Neuron. 2016 Jul 12;91(3):615-28. doi: 10.1016/j.neuron.2016.06.031

Locomotor systems generate diverse motor patterns to produce the movements underlying behavior, requiring that motor neurons be recruited at various phases of the locomotor cycle. Reciprocal inhibition produces alternating motor patterns; however, the mechanisms that generate other phasic relationships between intrasegmental motor pools are unknown. Here, we investigate one such motor pattern in the Drosophila larva, using a multidisciplinary approach including electrophysiology and ssTEM-based circuit reconstruction. We find that two motor pools that are sequentially recruited during locomotion have identical excitable properties. In contrast, they receive input from divergent premotor circuits. We find that this motor pattern is not orchestrated by differential excitatory input but by a GABAergic interneuron acting as a delay line to the later-recruited motor pool. Our findings show how a motor pattern is generated as a function of the modular organization of locomotor networks through segregation of inhibition, a potentially general mechanism for sequential motor patterns.

View Publication Page