Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4138 Publications

Showing 431-440 of 4138 results
06/02/22 | Allosteric interactions prime androgen receptor dimerization and activation.
Wasmuth EV, Broeck AV, LaClair JR, Hoover EA, Lawrence KE, Paknejad N, Pappas K, Matthies D, Wang B, Feng W, Watson PA, Zinder JC, Karthaus WR, de la Cruz MJ, Hite RK, Manova-Todorova K, Yu Z, Weintraub ST, Klinge S, Sawyers CL
Molecular Cell. 2022 Jun 02;82(11):2021-31. doi: 10.1016/j.molcel.2022.03.035

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.

View Publication Page
Gonen Lab
07/28/13 | Allosteric mechanism of water-channel gating by Ca(2+)-calmodulin.
Reichow SL, Clemens DM, Freites JA, Németh-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T
Nature Structural & Molecular Biology. 2013 Jul 28;20(9):1085-92. doi: 10.1038/nsmb.2630

Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudoatomic structure of full-length mammalian aquaporin-0 (AQP0, Bos taurus) in complex with CaM, using EM to elucidate how this signaling protein modulates water-channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits.

View Publication Page
06/11/21 | Alpha-1 adrenergic receptor antagonists to prevent hyperinflammation and death from lower respiratory tract infection.
Koenecke A, Powell M, Xiong R, Shen Z, Fischer N, Huq S, Khalafallah AM, Trevisan M, Sparen P, Carrero JJ, Nishimura A, Caffo B, Stuart EA, Bai R, Staedtke V, Thomas DL, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S, Bettegowda C, Konig MF, Mensh BD, Vogelstein JT, Athey S
eLife. 2021 Jun 11;10:. doi: 10.7554/eLife.61700

In severe viral pneumonia, including Coronavirus disease 2019 (COVID-19), the viral replication phase is often followed by hyperinflammation, which can lead to acute respiratory distress syndrome, multi-organ failure, and death. We previously demonstrated that alpha-1 adrenergic receptor (⍺-AR) antagonists can prevent hyperinflammation and death in mice. Here, we conducted retrospective analyses in two cohorts of patients with acute respiratory distress (ARD, n = 18,547) and three cohorts with pneumonia (n = 400,907). Federated across two ARD cohorts, we find that patients exposed to ⍺-AR antagonists, as compared to unexposed patients, had a 34% relative risk reduction for mechanical ventilation and death (OR = 0.70, p = 0.021). We replicated these methods on three pneumonia cohorts, all with similar effects on both outcomes. All results were robust to sensitivity analyses. These results highlight the urgent need for prospective trials testing whether prophylactic use of ⍺-AR antagonists ameliorates lower respiratory tract infection-associated hyperinflammation and death, as observed in COVID-19.

View Publication Page
Magee Lab
08/15/08 | Altered synaptic and non-synaptic properties of CA1 pyramidal neurons in Kv4.2 knockout mice.
Andrásfalvy BK, Makara JK, Johnston D, J.C. Magee
The Journal of Physiology. 2008 Aug 15;586(16):3881-92. doi: 10.1113/jphysiol.2008.154336

Back-propagating action potentials (bAPs) travelling from the soma to the dendrites of neurons are involved in various aspects of synaptic plasticity. The distance-dependent increase in Kv4.2-mediated A-type K(+) current along the apical dendrites of CA1 pyramidal cells (CA1 PCs) is responsible for the attenuation of bAP amplitude with distance from the soma. Genetic deletion of Kv4.2 reduced dendritic A-type K(+) current and increased the bAP amplitude in distal dendrites. Our previous studies revealed that the amplitude of unitary Schaffer collateral inputs increases with distance from the soma along the apical dendrites of CA1 PCs. We tested the hypothesis that the weight of distal synapses is dependent on dendritic Kv4.2 channels. We compared the amplitude and kinetics of mEPSCs at different locations on the main apical trunk of CA1 PCs from wild-type (WT) and Kv4.2 knockout (KO) mice. While wild-type mice showed normal distance-dependent scaling, it was missing in the Kv4.2 KO mice. We also tested whether there was an increase in inhibition in the Kv4.2 knockout, induced in an attempt to compensate for a non-specific increase in neuronal excitability (after-polarization duration and burst firing probability were increased in KO). Indeed, we found that the magnitude of the tonic GABA current increased in Kv4.2 KO mice by 53% and the amplitude of mIPSCs increased by 25%, as recorded at the soma. Our results suggest important roles for the dendritic K(+) channels in distance-dependent adjustment of synaptic strength as well as a primary role for tonic inhibition in the regulation of global synaptic strength and membrane excitability.

View Publication Page
10/18/24 | Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity
Taylor B. Updegrove , Thomas Delerue , V. Anantharaman , Hyomoon Cho , Carissa Chan , Thomas Nipper , Hyoyoung Choo-Wosoba , Lisa Jenkins , Lixia Zhang , Yijun Su , Hari Shroff , Jiji Chen , Carole Bewley , L. Aravind , Kumaran S Ramamurthi
Sci Adv. 2024 Oct 18;10(42):eadq0791. doi: 10.1126/sciadv.adq0791

Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation nonuniformly to secure against the possibility that favorable growth conditions, which put sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway containing the proteins ShfA (YabQ) and ShfP (YvnB) that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early use a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay nonsporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.

View Publication Page
10/15/07 | Ambient mass spectrometry with a handheld mass spectrometer at high pressure.
Keil A, Talaty N, Janfelt C, Noll RJ, Gao L, Ouyang Z, Cooks RG
Analytical Chemistry. 2007 Oct 15;79(20):7734-9. doi: 10.1364/AO.50.001792

The first coupling of atmospheric pressure ionization methods, electrospray ionization (ESI) and desorption electrospray ionization (DESI), to a miniature hand-held mass spectrometer is reported. The instrument employs a rectilinear ion trap (RIT) mass analyzer and is battery-operated, hand-portable, and rugged (total system: 10 kg, 0.014 m(3), 75 W power consumption). The mass spectrometer was fitted with an atmospheric inlet, consisting of a 10 cm x 127 microm inner diameter stainless steel capillary tube which was used to introduce gas into the vacuum chamber at 13 mL/min. The operating pressure was 15 mTorr. Ions, generated by the atmospheric pressure ion source, were directed by the inlet along the axis of the ion trap, entering through an aperture in the dc-biased end plate, which was also operated as an ion gate. ESI and DESI sources were used to generate ions; ESI-MS analysis of an aqueous mixture of drugs yielded detection limits in the low parts-per-billion range. Signal response was linear over more than 3 orders of magnitude. Tandem mass spectrometry experiments were used to identify components of this mixture. ESI was also applied to the analysis of peptides and in this case multiply charged species were observed for compounds of molecular weight up to 1200 Da. Cocaine samples deposited or already present on different surfaces, including currency, were rapidly analyzed in situ by DESI. A geometry-independent version of the DESI ion source was also coupled to the miniature mass spectrometer. These results demonstrate that atmospheric pressure ionization can be implemented on simple portable mass spectrometry systems.

View Publication Page
Looger Lab
04/25/19 | Amino acid signatures of HLA Class-I and II molecules are strongly associated with SLE susceptibility and autoantibody production in Eastern Asians.
Molineros JE, Looger LL, Kim K, Okada Y, Terao C, Sun C, Zhou X, Raj P, Kochi Y, Suzuki A, Akizuki S, Nakabo S, Bang S, Lee H, Kang YM, Suh C, Chung WT, Park Y, Choe J, Shim S, Lee S, Zuo X, Yamamoto K, Li Q, Shen N, Porter LL, Harley JB, Chua KH, Zhang H, Wakeland EK, Tsao BP, Bae S, Nath SK
PLoS Genetics. 2019 Apr 25;15(4):e1008092. doi: 10.1371/journal.pgen.1008092

Human leukocyte antigen (HLA) is a key genetic factor conferring risk of systemic lupus erythematosus (SLE), but precise independent localization of HLA effects is extremely challenging. As a result, the contribution of specific HLA alleles and amino-acid residues to the overall risk of SLE and to risk of specific autoantibodies are far from completely understood. Here, we dissected (a) overall SLE association signals across HLA, (b) HLA-peptide interaction, and (c) residue-autoantibody association. Classical alleles, SNPs, and amino-acid residues of eight HLA genes were imputed across 4,915 SLE cases and 13,513 controls from Eastern Asia. We performed association followed by conditional analysis across HLA, assessing both overall SLE risk and risk of autoantibody production. DR15 alleles HLA-DRB1*15:01 (P = 1.4x10-27, odds ratio (OR) = 1.57) and HLA-DQB1*06:02 (P = 7.4x10-23, OR = 1.55) formed the most significant haplotype (OR = 2.33). Conditioned protein-residue signals were stronger than allele signals and mapped predominantly to HLA-DRB1 residue 13 (P = 2.2x10-75) and its proxy position 11 (P = 1.1x10-67), followed by HLA-DRB1-37 (P = 4.5x10-24). After conditioning on HLA-DRB1, novel associations at HLA-A-70 (P = 1.4x10-8), HLA-DPB1-35 (P = 9.0x10-16), HLA-DQB1-37 (P = 2.7x10-14), and HLA-B-9 (P = 6.5x10-15) emerged. Together, these seven residues increased the proportion of explained heritability due to HLA to 2.6%. Risk residues for both overall disease and hallmark autoantibodies (i.e., nRNP: DRB1-11, P = 2.0x10-14; DRB1-13, P = 2.9x10-13; DRB1-30, P = 3.9x10-14) localized to the peptide-binding groove of HLA-DRB1. Enrichment for specific amino-acid characteristics in the peptide-binding groove correlated with overall SLE risk and with autoantibody presence. Risk residues were in primarily negatively charged side-chains, in contrast with rheumatoid arthritis. We identified novel SLE signals in HLA Class I loci (HLA-A, HLA-B), and localized primary Class II signals to five residues in HLA-DRB1, HLA-DPB1, and HLA-DQB1. These findings provide insights about the mechanisms by which the risk residues interact with each other to produce autoantibodies and are involved in SLE pathophysiology.

View Publication Page
03/25/24 | Amino acid transporter SLC7A5 regulates cell proliferation and secretary cell differentiation and distribution in the mouse intestine
Bao L, Fu L, Su Y, Chen Z, Peng Z, Sun L, Gonzalez FJ, Wu C, Zhang H, Shi B, Shi Y
Int J Biol Sci. 2024 Mar 25;20(6):2187-2201. doi: 10.7150/ijbs.94297

The intestine is critical for not only processing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell (IEC)-specific knockout () of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and reduces mTORC1 signaling. Surprisingly, adult intestinal crypts have increased cell proliferation but reduced mature Paneth cells. Goblet cells, the other major secretory cell type in the small intestine, are increased in the crypts but reduced in the villi. Analyses with scRNA-seq and electron microscopy have revealed dedifferentiation of Paneth cells in mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. Thus, SLC7A5 likely regulates secretory cell differentiation to affect stem cell niche and indirectly regulate cell proliferation.

View Publication Page
Gonen Lab
03/30/14 | Amphotericin forms an extramembranous and fungicidal sterol sponge.
Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S, Uno BE, Wildeman EL, Gonen T, Rienstra CM, Burke MD
Nature Chemical Biology. 2014 Mar 30;10(5):400-6. doi: 10.1038/nchembio.1496

For over 50 years, amphotericin has remained the powerful but highly toxic last line of defense in treating life-threatening fungal infections in humans with minimal development of microbial resistance. Understanding how this small molecule kills yeast is thus critical for guiding development of derivatives with an improved therapeutic index and other resistance-refractory antimicrobial agents. In the widely accepted ion channel model for its mechanism of cytocidal action, amphotericin forms aggregates inside lipid bilayers that permeabilize and kill cells. In contrast, we report that amphotericin exists primarily in the form of large, extramembranous aggregates that kill yeast by extracting ergosterol from lipid bilayers. These findings reveal that extraction of a polyfunctional lipid underlies the resistance-refractory antimicrobial action of amphotericin and suggests a roadmap for separating its cytocidal and membrane-permeabilizing activities. This new mechanistic understanding is also guiding development of what are to our knowledge the first derivatives of amphotericin that kill yeast but not human cells.

View Publication Page
10/31/16 | AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function.
Kang SW, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott-Schwartz J, Fu D
PLoS One. 2016 Oct 31;11(10):e0165638. doi: 10.1371/journal.pone.0165638

Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury.

View Publication Page