Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 431-440 of 3945 results
Gonen Lab
10/18/10 | An engineered DNA-binding protein self-assembles metallic nanostructures.
Hall Sedlak R, Hnilova M, Gachelet E, Przybyla L, Dranow D, Gonen T, Sarikaya M, Tamerler C, Traxler B
Chembiochem: A European Journal of Chemical Biology. 2010 Oct 18;11(15):2108-12. doi: 10.1002/cbic.201000407

The golden age of DNA: We describe a strategy for engineering bifunctional proteins that simultaneously associate with metals and DNA to create self-assembled nanostructures. A DNA binding protein engineered with a gold binding peptide arranges colloidal gold particles along a DNA guide by virtue of its introduced peptide motif. These self-assembled complexes represent a step toward constructing nanoarchitectures with potential in nanoelectronic and photonic devices.

View Publication Page
03/01/15 | An enhanced gene targeting toolkit for Drosophila: golic+.
Chen H, Huang Y, Pfeiffer BD, Yao X, Lee T
Genetics. 2015 Mar;199(3):683-94. doi: 10.1534/genetics.114.173716

Ends-out gene targeting allows seamless replacement of endogenous genes with engineered DNA fragments by homologous recombination, thus creating designer "genes" in the endogenous locus. Conventional gene targeting in Drosophila involves targeting with the preintegrated donor DNA in the larval primordial germ cells. Here we report G: ene targeting during O: ogenesis with L: ethality I: nhibitor and C: RISPR/Cas (Golic+), which improves on all major steps in such transgene-based gene targeting systems. First, donor DNA is integrated into precharacterized attP sites for efficient flip-out. Second, FLP, I-SceI, and Cas9 are specifically expressed in cystoblasts, which arise continuously from female germline stem cells, thereby providing a continual source of independent targeting events in each offspring. Third, a repressor-based lethality selection is implemented to facilitate screening for correct targeting events. Altogether, Golic+ realizes high-efficiency ends-out gene targeting in ovarian cystoblasts, which can be readily scaled up to achieve high-throughput genome editing.

View Publication Page
08/17/20 | An enzymatic toolkit for selective proteolysis, detection, and visualization of mucin-domain glycoproteins
Shon DJ, Malaker SA, Pedram K, Yang E, Krishnan V, Dorigo O, Bertozzi CR
Proceedings of the National Academy of Sciences. Jan-09-2020;117(35):21299 - 21307. doi: 10.1073/pnas.2012196117

Densely O-glycosylated mucin domains are found in a broad range of cell surface and secreted proteins, where they play key physiological roles. In addition, alterations in mucin expression and glycosylation are common in a variety of human diseases, such as cancer, cystic fibrosis, and inflammatory bowel diseases. These correlations have been challenging to uncover and establish because tools that specifically probe mucin domains are lacking. Here, we present a panel of bacterial proteases that cleave mucin domains via distinct peptide- and glycan-based motifs, generating a diverse enzymatic toolkit for mucin-selective proteolysis. By mutating catalytic residues of two such enzymes, we engineered mucin-selective binding agents with retained glycoform preferences. StcEE447D is a pan-mucin stain derived from enterohemorrhagic Escherichia coli that is tolerant to a wide range of glycoforms. BT4244E575A derived from Bacteroides thetaiotaomicron is selective for truncated, asialylated core 1 structures commonly associated with malignant and premalignant tissues. We demonstrated that these catalytically inactive point mutants enable robust detection and visualization of mucin-domain glycoproteins by flow cytometry, Western blot, and immunohistochemistry. Application of our enzymatic toolkit to ascites fluid and tissue slices from patients with ovarian cancer facilitated characterization of patients based on differences in mucin cleavage and expression patterns.

 

View Publication Page
05/28/22 | An essential experimental control for functional connectivity mapping with optogenetics.
David Tadres , Hiroshi M. Shiozaki , Ibrahim Tastekin , David L. Stern , Matthieu Louis
bioRxiv. 2022 May 28:. doi: 10.1101/2022.05.26.493610

To establish functional connectivity between two candidate neurons that might form a circuit element, a common approach is to activate an optogenetic tool such as Chrimson in the candidate pre-synaptic neuron and monitor fluorescence of the calcium-sensitive indicator GCaMP in a candidate post-synaptic neuron. While performing such experiments, we found that low levels of leaky Chrimson expression can lead to strong artifactual GCaMP signals in presumptive postsynaptic neurons even when Chrimson is not intentionally expressed in any particular neurons. Withholding all-trans retinal, the chromophore required as a co-factor for Chrimson response to light, eliminates GCaMP signal but does not provide an experimental control for leaky Chrimson expression. Leaky Chrimson expression appears to be an inherent feature of current Chrimson transgenes, since artifactual connectivity was detected with Chrimson transgenes integrated into three different genomic locations (two insertions tested in larvae; a third insertion tested in the adult fly). These false-positive signals may complicate the interpretation of functional connectivity experiments. We illustrate how a no-Gal4 negative control improves interpretability of functional connectivity assays. We also propose a simple but effective procedure to identify experimental conditions that minimize potentially incorrect interpretations caused by leaky Chrimson expression.

View Publication Page
07/22/11 | An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol.
Lasek AW, Lim J, Kliethermes CL, Berger KH, Joslyn G, Brush G, Xue L, Robertson M, Moore MS, Vranizan K, Morris SW, Schuckit MA, White RL, Heberlein U
PLoS One. 2011 Jul 22;6(7):e22636. doi: 10.1371/journal.pone.0022636

Anaplastic lymphoma kinase (Alk) is a gene expressed in the nervous system that encodes a receptor tyrosine kinase commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol. Database analyses revealed that Alk expression levels in the brains of recombinant inbred mice are negatively correlated with ethanol-induced ataxia and ethanol consumption. We therefore tested Alk gene knockout mice and found that they sedate longer in response to high doses of ethanol and consume more ethanol than wild-type mice. Finally, sequencing of human ALK led to the discovery of four polymorphisms associated with a low level of response to ethanol, an intermediate phenotype that is predictive of future alcohol use disorders (AUDs). These results suggest that Alk plays an evolutionary conserved role in ethanol-related behaviors. Moreover, ALK may be a novel candidate gene conferring risk for AUDs as well as a potential target for pharmacological intervention.

View Publication Page
11/22/11 | An evolving paradigm for the secretory pathway?
Lippincott-Schwartz J
Molecular biology of the cell. 2011 Nov;22(21):3929-32. doi: 10.1091/mbc.E11-05-0452

The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes.

View Publication Page
08/19/24 | An Image Processing Tool for Automated Quantification of Bacterial Burdens in Zebrafish Larvae
Yamaguchi N, Otsuna H, Eisenberg-Bord M, Ramakrishnan L
bioRxiv. 2024 Aug 19:. doi: 10.1101/2024.08.16.608298

Zebrafish larvae are used to model the pathogenesis of multiple bacteria. This transparent model offers the unique advantage of allowing quantification of fluorescent bacterial burdens (fluorescent pixel counts: FPC) in vivo by facile microscopical methods, replacing enumeration of bacteria using time-intensive plating of lysates on bacteriological media. Accurate FPC measurements require laborious manual image processing to mark the outside borders of the animals so as to delineate the bacteria inside the animals from those in the culture medium that they are in. Here, we have developed an automated ImageJ/Fiji-based macro that accurately detect the outside borders of Mycobacterium marinum-infected larvae.

View Publication Page
03/01/12 | An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P
The ISME Journal. 2012 Mar;6(3):610-8. doi: 10.1038/ismej.2011.139

Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ’taxonomy to tree’ approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.

View Publication Page
Cardona Lab
09/01/05 | An in situ hybridization protocol for planarian embryos: monitoring myosin heavy chain gene expression.
Cardona A, Fernández J, Solana J, Romero R
Development Genes & Evolution. 2005 Sep;215(9):482-88. doi: 10.1007/s00427-005-0003-1

The monitoring of gene expression is fundamental for understanding developmental biology. Here we report a successful experimental protocol for in situ hybridization in both whole-mount and sectioned planarian embryos. Conventional in situ hybridization techniques in developmental biology are used on whole-mount preparations. However, given that the inherent lack of external morphological markers in planarian embryos hinders the proper interpretation of gene expression data in whole-mount preparations, here we used sectioned material. We discuss the advantages of sectioned versus whole-mount preparations, namely, better probe penetration, improved tissue preservation, and the possibility to interpret gene expression in relation to internal morphological markers such as the epidermis, the embryonic and definitive pharynges, and the gastrodermis. Optimal fixatives and embedding methods for sectioning are also discussed.

View Publication Page
03/01/06 | An in vitro fluorescence screen to identify antivirals that disrupt hepatitis B virus capsid assembly.
Stray SJ, Johnson JM, Kopek BG, Zlotnick A
Nature Biotechnology. 2006 Mar;24(3):358-62. doi: 10.1038/nbt1187

Virus assembly has not been routinely targeted in the development of antiviral drugs, in part because of the lack of tractable methods for screening in vitro. We have developed an in vitro assay of hepatitis B virus (HBV) capsid assembly, based on fluorescence quenching of dye-labeled capsid protein, for testing potential inhibitors. This assay is adaptable to high-throughput screening and can identify small-molecule inhibitors of virus assembly that prevent, inappropriately accelerate and/or misdirect capsid formation to yield aberrant particles. An in vitro primary screen has the advantage of identifying promising lead compounds affecting assembly without the requirement that they be taken up by cells in culture and be nontoxic. Our approach may facilitate the identification of antivirals targeting viruses other than HBV, such as avian influenza and HIV.

View Publication Page