Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4138 Publications

Showing 461-470 of 4138 results
08/22/25 | An essential experimental control for functional connectivity mapping with optogenetics.
David Tadres , Hiroshi M. Shiozaki , Ibrahim Tastekin , David L. Stern , Matthieu Louis
Genetics. 2025 Aug 22:. doi: 10.1093/genetics/iyaf174

To establish functional connectivity between two candidate neurons that might form a circuit element, a common approach is to activate an optogenetic tool such as Chrimson in the candidate pre-synaptic neuron and monitor fluorescence of the calcium-sensitive indicator GCaMP in a candidate post-synaptic neuron. While performing such experiments in Drosophila, we found that low levels of leaky Chrimson expression can lead to strong artifactual GCaMP signals in presumptive postsynaptic neurons even when Chrimson is not intentionally expressed in any particular neurons. Withholding all-trans retinal, the chromophore required as a co-factor for Chrimson response to light, eliminates GCaMP signal but does not provide an experimental control for leaky Chrimson expression. Leaky Chrimson expression appears to be an inherent feature of current Chrimson transgenes, since artifactual connectivity was detected with Chrimson transgenes integrated into multiple genomic locations. While these false-positive signals may complicate the interpretation of functional connectivity experiments, we illustrate how a no-Gal4 negative control improves interpretability of functional connectivity assays. We also propose a simple but effective procedure to identify experimental conditions that minimize potentially incorrect interpretations caused by leaky Chrimson expression.

View Publication Page
07/22/11 | An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol.
Lasek AW, Lim J, Kliethermes CL, Berger KH, Joslyn G, Brush G, Xue L, Robertson M, Moore MS, Vranizan K, Morris SW, Schuckit MA, White RL, Heberlein U
PLoS One. 2011 Jul 22;6(7):e22636. doi: 10.1371/journal.pone.0022636

Anaplastic lymphoma kinase (Alk) is a gene expressed in the nervous system that encodes a receptor tyrosine kinase commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol. Database analyses revealed that Alk expression levels in the brains of recombinant inbred mice are negatively correlated with ethanol-induced ataxia and ethanol consumption. We therefore tested Alk gene knockout mice and found that they sedate longer in response to high doses of ethanol and consume more ethanol than wild-type mice. Finally, sequencing of human ALK led to the discovery of four polymorphisms associated with a low level of response to ethanol, an intermediate phenotype that is predictive of future alcohol use disorders (AUDs). These results suggest that Alk plays an evolutionary conserved role in ethanol-related behaviors. Moreover, ALK may be a novel candidate gene conferring risk for AUDs as well as a potential target for pharmacological intervention.

View Publication Page
11/22/11 | An evolving paradigm for the secretory pathway?
Lippincott-Schwartz J
Molecular biology of the cell. 2011 Nov;22(21):3929-32. doi: 10.1091/mbc.E11-05-0452

The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes.

View Publication Page
08/06/25 | An expanded palette of bright and photostable organellar Ca2+ sensors
Moret A, Farrants H, Fan R, Zingg KG, Silva B, Roselli C, Oertner TG, Gee CE, Hadjieconomou D, Rangaraju V, Schreiter ER, de Juan-Sanz J
eLife. 2025 Aug 26:. doi: 10.7554/elife.107845.1

The use of fluorescent sensors for functional imaging has revolutionized the study of organellar Ca2+ signaling. However, understanding the dynamic interplay between intracellular Ca2+ sinks and sources has been hindered by the lack of bright, photostable, and multiplexed measurements in different organelles, limiting our ability to define how Ca2+ shapes cell physiology across fields of biology. Here we introduce a new toolkit of chemigenetic organellar Ca2+ indicators whose color is tunable by reconstituting their fluorescence with different exogenous rhodamine dye-ligands, which significantly expand the capacity for multiplexing organellar Ca2+ measurements. These sensors, which we named ER-HaloCaMP and Mito-HaloCaMP, are optimized to report Ca2+dynamics in the endoplasmic reticulum (ER) and mitochondria of mammalian cells and neurons, and show significantly improved brightness, photostability and responsiveness when compared to current best-in-class alternatives. Using either red or far-red dye-ligands, both ER-HaloCaMP and Mito-HaloCaMP enable visualizing ER and mitochondrial Ca2+ dynamics in neuronal axons, a subcellular location that only contains a few ER tubules and small mitochondria, structural limitations that have impaired measurements with previous red sensors. To show the expanded multiplexing capacities of our toolkit, we measured interorganellar Ca2+ fluxes simultaneously in three different subcellular compartments in live cells, revealing that the amplitude of ER Ca2+release controls the efficacy of ER-mitochondria Ca2+ coupling in a cooperative manner. Organellar HaloCaMPs enable also measuring Ca2+ dynamics in intact brain tissue from flies and rodents, demonstrating their versatility across biological models. Our new toolkit provides an expanded palette of bright, photostable and responsive organellar Ca2+ sensors, which will facilitate future studies of intracellular Ca2+ signaling across fields of biology in health and disease.

View Publication Page
08/19/24 | An Image Processing Tool for Automated Quantification of Bacterial Burdens in Zebrafish Larvae
Yamaguchi N, Otsuna H, Eisenberg-Bord M, Ramakrishnan L
bioRxiv. 2024 Aug 19:. doi: 10.1101/2024.08.16.608298

Zebrafish larvae are used to model the pathogenesis of multiple bacteria. This transparent model offers the unique advantage of allowing quantification of fluorescent bacterial burdens (fluorescent pixel counts: FPC) in vivo by facile microscopical methods, replacing enumeration of bacteria using time-intensive plating of lysates on bacteriological media. Accurate FPC measurements require laborious manual image processing to mark the outside borders of the animals so as to delineate the bacteria inside the animals from those in the culture medium that they are in. Here, we have developed an automated ImageJ/Fiji-based macro that accurately detect the outside borders of Mycobacterium marinum-infected larvae.

View Publication Page
12/24/24 | An Image Processing Tool for Automated Quantification of Bacterial Burdens in Zebrafish Larvae.
Yamaguchi N, Otsuna H, Eisenberg-Bord M, Ramakrishnan L
Zebrafish. 12/2024:. doi: 10.1089/zeb.2024.0170

Zebrafish larvae are used to model the pathogenesis of multiple bacteria. This transparent model offers the unique advantage of allowing quantification of fluorescent bacterial burdens (fluorescent pixel counts [FPC]) by facile microscopical methods, replacing enumeration of bacteria using time-intensive plating of lysates on bacteriological media. Accurate FPC measurements require laborious manual image processing to mark the outside borders of the animals so as to delineate the bacteria inside the animals from those in the culture medium that they are in. Here, we have developed an automated ImageJ/Fiji-based macro that accurately detects the outside borders of -infected larvae.

View Publication Page
03/01/12 | An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P
The ISME Journal. 2012 Mar;6(3):610-8. doi: 10.1038/ismej.2011.139

Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ’taxonomy to tree’ approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.

View Publication Page
Cardona Lab
09/01/05 | An in situ hybridization protocol for planarian embryos: monitoring myosin heavy chain gene expression.
Cardona A, Fernández J, Solana J, Romero R
Development Genes & Evolution. 2005 Sep;215(9):482-88. doi: 10.1007/s00427-005-0003-1

The monitoring of gene expression is fundamental for understanding developmental biology. Here we report a successful experimental protocol for in situ hybridization in both whole-mount and sectioned planarian embryos. Conventional in situ hybridization techniques in developmental biology are used on whole-mount preparations. However, given that the inherent lack of external morphological markers in planarian embryos hinders the proper interpretation of gene expression data in whole-mount preparations, here we used sectioned material. We discuss the advantages of sectioned versus whole-mount preparations, namely, better probe penetration, improved tissue preservation, and the possibility to interpret gene expression in relation to internal morphological markers such as the epidermis, the embryonic and definitive pharynges, and the gastrodermis. Optimal fixatives and embedding methods for sectioning are also discussed.

View Publication Page
03/01/06 | An in vitro fluorescence screen to identify antivirals that disrupt hepatitis B virus capsid assembly.
Stray SJ, Johnson JM, Kopek BG, Zlotnick A
Nature Biotechnology. 2006 Mar;24(3):358-62. doi: 10.1038/nbt1187

Virus assembly has not been routinely targeted in the development of antiviral drugs, in part because of the lack of tractable methods for screening in vitro. We have developed an in vitro assay of hepatitis B virus (HBV) capsid assembly, based on fluorescence quenching of dye-labeled capsid protein, for testing potential inhibitors. This assay is adaptable to high-throughput screening and can identify small-molecule inhibitors of virus assembly that prevent, inappropriately accelerate and/or misdirect capsid formation to yield aberrant particles. An in vitro primary screen has the advantage of identifying promising lead compounds affecting assembly without the requirement that they be taken up by cells in culture and be nontoxic. Our approach may facilitate the identification of antivirals targeting viruses other than HBV, such as avian influenza and HIV.

View Publication Page
07/16/21 | An inexpensive, high-precision, modular spherical treadmill setup optimized for experiments.
Loesche F, Reiser MB
Frontiers in Behavioral Neuroscience. 2021 Jul 16;15:689573. doi: 10.3389/fnbeh.2021.689573

To pursue a more mechanistic understanding of the neural control of behavior, many neuroethologists study animal behavior in controlled laboratory environments. One popular approach is to measure the movements of restrained animals while presenting controlled sensory stimulation. This approach is especially powerful when applied to genetic model organisms, such as , where modern genetic tools enable unprecedented access to the nervous system for activity monitoring or targeted manipulation. While there is a long history of measuring the behavior of body- and head-fixed insects walking on an air-supported ball, the methods typically require complex setups with many custom components. Here we present a compact, simplified setup for these experiments that achieves high-performance at low cost. The simplified setup integrates existing hardware and software solutions with new component designs. We replaced expensive optomechanical and custom machined components with off-the-shelf and 3D-printed parts, and built the system around a low-cost camera that achieves 180 Hz imaging and an inexpensive tablet computer to present view-angle-corrected stimuli updated through a local network. We quantify the performance of the integrated system and characterize the visually guided behavior of flies in response to a range of visual stimuli. In this paper, we thoroughly document the improved system; the accompanying repository incorporates CAD files, parts lists, source code, and detailed instructions. We detail a complete ~$300 system, including a cold-anesthesia tethering stage, that is ideal for hands-on teaching laboratories. This represents a nearly 50-fold cost reduction as compared to a typical system used in research laboratories, yet is fully featured and yields excellent performance. We report the current state of this system, which started with a 1-day teaching lab for which we built seven parallel setups and continues toward a setup in our lab for larger-scale analysis of visual-motor behavior in flies. Because of the simplicity, compactness, and low cost of this system, we believe that high-performance measurements of tethered insect behavior should now be widely accessible and suitable for integration into many systems. This access enables broad opportunities for comparative work across labs, species, and behavioral paradigms.

View Publication Page