Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Liu Zhe Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

61 Publications

Showing 1-10 of 61 results
08/15/24 | Plasticity-induced actin polymerization in the dendritic shaft regulates intracellular AMPA receptor trafficking.
Wong VC, Houlihan PR, Liu H, Walpita D, DeSantis MC, Liu Z, O'Shea EK
Elife. 2024 Aug 15;13:. doi: 10.7554/eLife.80622

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.

View Publication Page
07/24/24 | Cohesin prevents cross-domain gene coactivation.
Dong P, Zhang S, Gandin V, Xie L, Wang L, Lemire AL, Li W, Otsuna H, Kawase T, Lander AD, Chang HY, Liu ZJ
Nat Genet. 2024 Jul 24:. doi: 10.1038/s41588-024-01852-1

The contrast between the disruption of genome topology after cohesin loss and the lack of downstream gene expression changes instigates intense debates regarding the structure-function relationship between genome and gene regulation. Here, by analyzing transcriptome and chromatin accessibility at the single-cell level, we discover that, instead of dictating population-wide gene expression levels, cohesin supplies a general function to neutralize stochastic coexpression tendencies of cis-linked genes in single cells. Notably, cohesin loss induces widespread gene coactivation and chromatin co-opening tens of million bases apart in cis. Spatial genome and protein imaging reveals that cohesin prevents gene co-bursting along the chromosome and blocks spatial mixing of transcriptional hubs. Single-molecule imaging shows that cohesin confines the exploration of diverse enhancer and core promoter binding transcriptional regulators. Together, these results support that cohesin arranges nuclear topology to control gene coexpression in single cells.

View Publication Page
07/04/24 | CRISPR-array-mediated imaging of non-repetitive and multiplex genomic loci in living cells.
Yang L, Min Y, Liu Y, Gao B, Liu X, Huang Y, Wang H, Yang L, Liu ZJ, Chen L
Nat Methods. 2024 Jul 04:. doi: 10.1038/s41592-024-02333-3

Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.

View Publication Page
05/17/24 | Deep-Tissue Spatial Omics: Imaging Whole-Embryo Transcriptomics and Subcellular Structures at High Spatial Resolution
Gandin V, Kim J, Yang L, Lian Y, Kawase T, Hu A, Rokicki K, Fleishman G, Tillberg P, Aguilera Castrejon A, Stringer C, Preibisch S, Liu ZJ
bioRxiv. 2024 May 17:. doi: 10.1101/2024.05.17.594641

The inherent limitations of fluorescence microscopy, notably the restricted number of color channels, have long constrained comprehensive spatial analysis in biological specimens. Here, we introduce cycleHCR technology that leverages multicycle DNA barcoding and Hybridization Chain Reaction (HCR) to surpass the conventional color barrier. cycleHCR facilitates high-specificity, single-shot imaging per target for RNA and protein species within thick specimens, mitigating the molecular crowding issues encountered with other imaging-based spatial omics techniques. We demonstrate whole-mount transcriptomics imaging of 254 genes within an E6.5\~7.0 mouse embryo, achieving precise three-dimensional gene expression and cell fate mapping across a specimen depth of \~ 310 µm. Utilizing expansion microscopy alongside protein cycleHCR, we unveil the complex network of 10 subcellular structures in primary mouse embryonic fibroblasts. Furthermore, in mouse hippocampal slice, we image 8 protein targets and profile the transcriptome of 120 genes, uncovering complex gene expression gradients and cell-type specific nuclear structural variances. cycleHCR provides a unifying framework for multiplex RNA and protein imaging, offering a quantitative solution for elucidating spatial regulations in deep tissue contexts for research and potentially diagnostic applications.

View Publication Page
05/16/24 | Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment.
Daugird TA, Shi Y, Holland KL, Rostamian H, Liu Z, Lavis LD, Rodriguez J, Strahl BD, Legant WR
Nat. Commun.. 2024 May 16:. doi: 10.1038/s41467-024-48562-0

In the nucleus, biological processes are driven by proteins that diffuse through and bind to a meshwork of nucleic acid polymers. To better understand this interplay, we present an imaging platform to simultaneously visualize single protein dynamics together with the local chromatin environment in live cells. Together with super-resolution imaging, new fluorescent probes, and biophysical modeling, we demonstrate that nucleosomes display differential diffusion and packing arrangements as chromatin density increases whereas the viscoelastic properties and accessibility of the interchromatin space remain constant. Perturbing nuclear functions impacts nucleosome diffusive properties in a manner that is dependent both on local chromatin density and on relative location within the nucleus. Our results support a model wherein transcription locally stabilizes nucleosomes while simultaneously allowing for the free exchange of nuclear proteins. Additionally, they reveal that nuclear heterogeneity arises from both active and passive processes and highlight the need to account for different organizational principles when modeling different chromatin environments.

View Publication Page
05/07/24 | YAP condensates are highly organized hubs
Siyuan Hao , Ye Jin Lee , Nadav Benhamou Goldfajn , Eduardo Flores , Jindayi Liang , Hannah Fuehrer , Justin Demmerle , Jennifer Lippincott-Schwartz , Zhe Liu , Shahar Sukenik , Danfeng Cai
iScience. 2024 May 07:109927. doi: https://doi.org/10.1016/j.isci.2024.109927

YAP/TEAD signaling is essential for organismal development, cell proliferation, and cancer progression. As a transcriptional coactivator, how YAP activates its downstream target genes is incompletely understood. YAP forms biomolecular condensates in response to hyperosmotic stress, concentrating transcription-related factors to activate downstream target genes. However, whether YAP forms condensates under other signals, how YAP condensates organize and function, and how YAP condensates activate transcription in general are unknown. Here, we report that endogenous YAP forms sub-micron scale condensates in response to Hippo pathway regulation and actin cytoskeletal tension. YAP condensates are stabilized by the transcription factor TEAD1, and recruit BRD4, a coactivator that is enriched at active enhancers. Using single-particle tracking, we found that YAP condensates slowed YAP diffusion within condensate boundaries, a possible mechanism for promoting YAP target search. These results reveal that YAP condensate formation is a highly regulated process that is critical for YAP/TEAD target gene expression.

View Publication Page
03/06/24 | Assessing the impact of Brd2 depletion on chromatin compartmentalization
Advait Athreya , Liangqi Xie , Robert Tjian , Bin Zhang , Zhe J. Liu
bioRxiv. 2024 Mar 6:. doi: 10.1101/2024.03.02.583085

Recent insights into genome organization have emphasized the importance of A/B chromatin compartments. While our previous research showed that Brd2 depletion weakens compartment boundaries and promotes A/B mixing 1, Hinojosa-Gonzalez et al.2 were unable to replicate the findings. In response, we revisited our Micro-C data and successfully replicated the original results using the default parameters in the cooltools software package. We show that, after correcting inconsistencies with the selection and phasing of the compartment profiles, the decrease in B compartment strength persists but the change in compartment identity is to a much lesser extent than originally reported. To further assess the regulatory role of Brd2, we used saddle plots to determine the strength of compartmentalization and observed a consistent decrease of compartment strength especially at B compartments upon Brd2 depletion. This study highlights the importance of selecting appropriate parameters and analytical tools for compartment analysis and carefully interpreting the results.

View Publication Page
01/22/24 | KMT2 family of H3K4 methyltransferases: enzymatic activity-dependent and -independent functions.
Van HT, Xie G, Dong P, Liu Z, Ge K
Journal of Molecular Biology. 2024 Jan 22:168453. doi: 10.1016/j.jmb.2024.168453

Histone-lysine N-methyltransferase 2 (KMT2) methyltransferases play critical roles in gene regulation, cell differentiation, animal development, and human diseases. KMT2 biological roles are often attributed to their methyltransferase activities on lysine 4 of histone H3 (H3K4). However, recent data indicate that KMT2 proteins also possess non-enzymatic functions. In this review, we discuss the current understanding of KMT2 family, with a focus on their enzymatic activity-dependent and -independent functions. Six mammalian KMT2 proteins of three subgroups, KMT2A/B (MLL1/2), KMT2C/D (MLL3/4), and KMT2F/G (SETD1A/B or SET1A/B), have shared and distinct protein domains, catalytic substrates, genomic localizations, and associated complex subunits. Recent studies have revealed the central role of KMT2C/D in enhancer regulation, differentiation, and development and have highlighted KMT2C/D enzymatic activity-dependent and independent roles in mouse embryonic development and cell differentiation. Catalytic dependent and independent roles for KMT2A/B and KMT2F/G in gene regulation, differentiation, and development are less understood. Finally, we provide our perspectives and lay out future research directions that may help advance the investigation on enzymatic activity-dependent and -independent biological roles and working mechanisms of KMT2 methyltransferases.

View Publication Page
10/16/23 | Optimized Red-Absorbing Dyes for Imaging and Sensing
Grimm JB, Tkachuk AN, Patel R, Hennigan ST, Gutu A, Dong P, Gandin V, Osowski AM, Holland KL, Liu ZJ, Brown TA, Lavis LD
Journal of the American Chemical Society. 2023 Oct 16:. doi: 10.1021/jacs.3c0527310.1021/jacs.3c05273

Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone–zwitterion equilibrium constant (KL–Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure–activity relationships that govern KL–Z. We discovered that the auxochrome substituent strongly affects the lactone–zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure–activity relationships that will guide the design of future probes.

View Publication Page
04/19/23 | DNA-initiated epigenetic cascades driven by C9orf72 hexanucleotide repeat.
Liu Y, Huang Z, Liu H, Ji Z, Arora A, Cai D, Wang H, Liu M, Simko EA, Zhang Y, Periz G, Liu Z, Wang J
Neuron. 2023 Apr 19;111(8):1205-21. doi: 10.1016/j.neuron.2023.01.022

The C9orf72 hexanucleotide repeat expansion (HRE) is the most frequent genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we describe the pathogenic cascades that are initiated by the C9orf72 HRE DNA. The HRE DNA binds to its protein partner DAXX and promotes its liquid-liquid phase separation, which is capable of reorganizing genomic structures. An HRE-dependent nuclear accumulation of DAXX drives chromatin remodeling and epigenetic changes such as histone hypermethylation and hypoacetylation in patient cells. While regulating global gene expression, DAXX plays a key role in the suppression of basal and stress-inducible expression of C9orf72 via chromatin remodeling and epigenetic modifications of the promoter of the major C9orf72 transcript. Downregulation of DAXX or rebalancing the epigenetic modifications mitigates the stress-induced sensitivity of C9orf72-patient-derived motor neurons. These studies reveal a C9orf72 HRE DNA-dependent regulatory mechanism for both local and genomic architectural changes in the relevant diseases.

View Publication Page