Filter
Associated Lab
- Aguilera Castrejon Lab (1) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (1) Apply Ahrens Lab filter
- Betzig Lab (6) Apply Betzig Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Gonen Lab (1) Apply Gonen Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Keller Lab (1) Apply Keller Lab filter
- Lavis Lab (15) Apply Lavis Lab filter
- Lippincott-Schwartz Lab (12) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (61) Apply Liu (Zhe) Lab filter
- O'Shea Lab (2) Apply O'Shea Lab filter
- Podgorski Lab (1) Apply Podgorski Lab filter
- Schreiter Lab (1) Apply Schreiter Lab filter
- Singer Lab (2) Apply Singer Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (1) Apply Svoboda Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Tjian Lab (8) Apply Tjian Lab filter
- Turner Lab (1) Apply Turner Lab filter
Associated Project Team
Publication Date
- 2025 (1) Apply 2025 filter
- 2024 (7) Apply 2024 filter
- 2023 (3) Apply 2023 filter
- 2022 (5) Apply 2022 filter
- 2021 (6) Apply 2021 filter
- 2020 (7) Apply 2020 filter
- 2019 (7) Apply 2019 filter
- 2018 (3) Apply 2018 filter
- 2017 (5) Apply 2017 filter
- 2016 (4) Apply 2016 filter
- 2015 (4) Apply 2015 filter
- 2014 (4) Apply 2014 filter
- 2011 (1) Apply 2011 filter
- 2009 (1) Apply 2009 filter
- 2006 (3) Apply 2006 filter
Type of Publication
61 Publications
Showing 61-61 of 61 resultsYAP/TEAD signaling is essential for organismal development, cell proliferation, and cancer progression. As a transcriptional coactivator, how YAP activates its downstream target genes is incompletely understood. YAP forms biomolecular condensates in response to hyperosmotic stress, concentrating transcription-related factors to activate downstream target genes. However, whether YAP forms condensates under other signals, how YAP condensates organize and function, and how YAP condensates activate transcription in general are unknown. Here, we report that endogenous YAP forms sub-micron scale condensates in response to Hippo pathway regulation and actin cytoskeletal tension. YAP condensates are stabilized by the transcription factor TEAD1, and recruit BRD4, a coactivator that is enriched at active enhancers. Using single-particle tracking, we found that YAP condensates slowed YAP diffusion within condensate boundaries, a possible mechanism for promoting YAP target search. These results reveal that YAP condensate formation is a highly regulated process that is critical for YAP/TEAD target gene expression.