Filter
Associated Lab
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (2) Apply Betzig Lab filter
- Bock Lab (1) Apply Bock Lab filter
- Card Lab (1) Apply Card Lab filter
- Cardona Lab (9) Apply Cardona Lab filter
- Clapham Lab (2) Apply Clapham Lab filter
- Fetter Lab (3) Apply Fetter Lab filter
- Funke Lab (10) Apply Funke Lab filter
- Harris Lab (3) Apply Harris Lab filter
- Hess Lab (9) Apply Hess Lab filter
- Jayaraman Lab (1) Apply Jayaraman Lab filter
- Lippincott-Schwartz Lab (4) Apply Lippincott-Schwartz Lab filter
- Rubin Lab (4) Apply Rubin Lab filter
- Saalfeld Lab (62) Apply Saalfeld Lab filter
- Scheffer Lab (2) Apply Scheffer Lab filter
- Singer Lab (1) Apply Singer Lab filter
- Sternson Lab (2) Apply Sternson Lab filter
- Svoboda Lab (2) Apply Svoboda Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
- Turaga Lab (3) Apply Turaga Lab filter
Associated Project Team
Publication Date
- 2025 (2) Apply 2025 filter
- 2024 (4) Apply 2024 filter
- 2023 (6) Apply 2023 filter
- 2022 (6) Apply 2022 filter
- 2021 (4) Apply 2021 filter
- 2020 (2) Apply 2020 filter
- 2019 (3) Apply 2019 filter
- 2018 (5) Apply 2018 filter
- 2017 (4) Apply 2017 filter
- 2016 (3) Apply 2016 filter
- 2015 (4) Apply 2015 filter
- 2014 (1) Apply 2014 filter
- 2012 (7) Apply 2012 filter
- 2010 (5) Apply 2010 filter
- 2009 (4) Apply 2009 filter
- 2008 (2) Apply 2008 filter
Type of Publication
62 Publications
Showing 11-20 of 62 resultsTiled serial section Transmission Electron Microscopy (ssTEM) is increasingly used to describe high-resolution anatomy of large biological specimens. In particular in neurobiology, TEM is indispensable for analysis of synaptic connectivity in the brain. Registration of ssTEM image mosaics has to recover the 3D continuity and geometrical properties of the specimen in presence of various distortions that are applied to the tissue during sectioning, staining and imaging. These include staining artifacts, mechanical deformation, missing sections and the fact that structures may appear dissimilar in consecutive sections.
The cerebellum plays an important role in both motor control and cognitive function. Cerebellar function is topographically organized and diseases that affect specific parts of the cerebellum are associated with specific patterns of symptoms. Accordingly, delineation and quantification of cerebellar sub-regions from magnetic resonance images are important in the study of cerebellar atrophy and associated functional losses. This paper describes an automated cerebellar lobule segmentation method based on a graph cut segmentation framework. Results from multi-atlas labeling and tissue classification contribute to the region terms in the graph cut energy function and boundary classification contributes to the boundary term in the energy function. A cerebellar parcellation is achieved by minimizing the energy function using the α-expansion technique. The proposed method was evaluated using a leave-one-out cross-validation on 15 subjects including both healthy controls and patients with cerebellar diseases. Based on reported Dice coefficients, the proposed method outperforms two state-of-the-art methods. The proposed method was then applied to 2(j) 77 subjects to study the region-specific cerebellar structural differences in three spinocerebellar ataxia (SCA) genetic subtypes. Quantitative analysis of the lobule volumes show distinct patterns of volume changes associated with different SCA subtypes consistent with known patterns of atrophy in these genetic subtypes.
The study of neural circuits requires the reconstruction of neurons and the identification of synaptic connections between them. To scale the reconstruction to the size of whole-brain datasets, semi-automatic methods are needed to solve those tasks. Here, we present an automatic method for synaptic partner identification in insect brains, which uses convolutional neural networks to identify post-synaptic sites and their pre-synaptic partners. The networks can be trained from human generated point annotations alone and requires only simple post-processing to obtain final predictions. We used our method to extract 244 million putative synaptic partners in the fifty-teravoxel full adult fly brain (FAFB) electron microscopy (EM) dataset and evaluated its accuracy on 146,643 synapses from 702 neurons with a total cable length of 312 mm in four different brain regions. The predicted synaptic connections can be used together with a neuron segmentation to infer a connectivity graph with high accuracy: 96% of edges between connected neurons are correctly classified as weakly connected (less than five synapses) and strongly connected (at least five synapses). Our synaptic partner predictions for the FAFB dataset are publicly available, together with a query library allowing automatic retrieval of up- and downstream neurons.
Landmark correspondences can be used for various tasks in image processing such as image alignment, reconstruction of panoramic photographs, object recognition and simultaneous localization and mapping for mobile robots. The computer vision community knows several techniques for extracting and pairwise associating such landmarks using distinctive invariant local image features. Two very successful methods are the Scale Invariant Feature Transform (SIFT)1 and Multi-Scale Oriented Patches (MOPS).2
We implemented these methods in the Java programming language3 for seamless use in ImageJ.4 We use it for fully automatic registration of gigantic serial section Transmission Electron Microscopy (TEM) mosaics. Using automatically detected landmark correspondences, the registration of large image mosaics simplifies to globally minimizing the displacement of corresponding points.
We present here an introduction to automatic landmark correspondence detection and demonstrate our implementation for ImageJ. We demonstrate the application of the plug-in on diverse image data.
Single Plane Illumination Microscopy (SPIM) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the biological sample from multiple angles, SPIM has the potential to achieve isotropic resolution throughout relatively large biological specimens. For every angle, however, only a shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. Existing intensity-based registration techniques still struggle to robustly and accurately align images that are characterized by limited overlap and/or heavy blurring. To be able to register such images, we add sub-resolution fluorescent beads to the rigid agarose medium in which the imaged specimen is embedded. For each segmented bead, we store the relative location of its n nearest neighbors in image space as rotation-invariant geometric local descriptors. Corresponding beads between overlapping images are identified by matching these descriptors. The bead correspondences are used to simultaneously estimate the globally optimal transformation for each individual image. The final output image is created by combining all images in an angle-independent output space, using volume injection and local content-based weighting of contributing images. We demonstrate the performance of our approach on data acquired from living embryos of Drosophila and fixed adult C.elegans worms. Bead-based registration outperformed intensity-based registration in terms of computation speed by two orders of magnitude while producing bead registration errors below 1 μm (about 1 pixel). It, therefore, provides an ideal tool for processing of long term time-lapse recordings of embryonic development consisting of hundreds of time points.
Quantitative phase imaging (QPI) has proven to be a valuable tool for advanced biological and pharmacological research, providing phase information for the study of cell features and physiology in label-free conditions. The next step for QPI to become a gold standard is the quantitative assessment of the phase gradients over the different microscopy setups. Given the large variety of QPI systems, a systematic comparison is a challenging task, and requires a calibration target representative of the living samples. In this paper, we introduce a tailor-made 3D-printed phantom derived from phase images of eukaryotic cells. It comprises typical morphologies and optical thicknesses found in biological cultures and is characterized with digital holographic microscopy (reference measurements). The performance of three different full field QPI optical systems, in terms of optical path difference and dry mass accuracy, were evaluated. This phantom opens up other possibilities for the validation of reconstruction algorithms and post-processing routines, and paves the way for calibration targets designed ad hoc for specific biological questions.
The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.
SUMMARY: High-resolution, three-dimensional (3D) imaging of large biological specimens generates massive image datasets that are difficult to navigate, annotate and share effectively. Inspired by online mapping applications like GoogleMaps, we developed a decentralized web interface that allows seamless navigation of arbitrarily large image stacks. Our interface provides means for online, collaborative annotation of the biological image data and seamless sharing of regions of interest by bookmarking. The CATMAID interface enables synchronized navigation through multiple registered datasets even at vastly different scales such as in comparisons between optical and electron microscopy. AVAILABILITY: http://fly.mpi-cbg.de/catmaid.
Evolution has generated an enormous variety of morphological, physiological, and behavioral traits in animals. How do behaviors evolve in different directions in species equipped with similar neurons and molecular components? Here we adopted a comparative approach to investigate the similarities and differences of escape behaviors in response to noxious stimuli and their underlying neural circuits between closely related drosophilid species. Drosophilids show a wide range of escape behaviors in response to noxious cues, including escape crawling, stopping, head casting, and rolling. Here we find that D. santomea, compared with its close relative D. melanogaster, shows a higher probability of rolling in response to noxious stimulation. To assess whether this behavioral difference could be attributed to differences in neural circuitry, we generated focused ion beam-scanning electron microscope volumes of the ventral nerve cord of D. santomea to reconstruct the downstream partners of mdIV, a nociceptive sensory neuron in D. melanogaster. Along with partner interneurons of mdVI (including Basin-2, a multisensory integration neuron necessary for rolling) previously identified in D. melanogaster, we identified two additional partners of mdVI in D. santomea. Finally, we showed that joint activation of one of the partners (Basin-1) and a common partner (Basin-2) in D. melanogaster increased rolling probability, suggesting that the high rolling probability in D. santomea is mediated by the additional activation of Basin-1 by mdIV. These results provide a plausible mechanistic explanation for how closely related species exhibit quantitative differences in the likelihood of expressing the same behavior.