Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Stern Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

158 Publications

Showing 1-10 of 158 results
10/14/25 | Natural evolution of intermale sexual behavior by multiple pheromone switches among <I>Drosophila</I> species
Ouadah Y, Naragon TH, Smihula H, Behrman EL, Khallaf MA, Ding Y, Stern DL, Parker J, Anderson DJ
bioRxiv. 2025 Oct 14:. doi: 10.1101/2025.10.14.682417

We have identified a Drosophila species in which males exhibit spontaneous, elaborate, and robust intermale sexual behavior. Males of D. santomea, a West African island endemic, distinguish conspecific sexes but court males and females promiscuously and seldom attack. Elevated intermale courtship derives from at least three changes in two separate pheromone systems. In males, the sexually monomorphic cuticular pheromone 7-tricosene promotes rather than inhibits courtship and the courtship-inhibiting olfactory pheromone cVA is reduced 84-92% compared to close relatives, including the sibling species D. yakuba. The third change is surprisingly in D. santomea females, where cVA suppresses rather than promotes sexual receptivity. The female cVA switch and male cVA reduction may have co-evolved to maintain efficient intraspecific mating in D. santomea but prevent sympatric hybridization with D. yakuba, or to reduce intraspecific aggression. We find that high intermale courtship and low cVA also co-occur and appear selectively derived in a distant monomorphic species D. persimilis, implying pheromonal and behavioral convergence in the two recently speciated taxa. The data suggest that sequential changes in the behavioral valence and levels of pheromones explain the recent evolutionary emergence of intermale sexual behavior in Drosophila.

View Publication Page
10/03/25 | Chromosome scale genomes of two invasive Adelges species enable virtual screening for selective adelgicides.
Glendening AM, Stephens C, Vuruputoor VS, Chaganti T, Myles MN, Stern DL, Abdelalim M, Juang Y, Hogenhout SA, Mathers TC, Pauloski N, Cernak TA, Wegrzyn JL, Fetter KC
G3 (Bethesda). 2025 Oct 03:. doi: 10.1093/g3journal/jkaf232

Two invasive adelgids are associated with widespread damage to several North American conifer species. Adelges tsugae, hemlock woolly adelgid, was introduced from Japan and reproduces parthenogenetically in North America, where it has rapidly decimated Tsuga canadensis and Tsuga caroliniana (eastern and Carolina hemlocks, respectively). Adelges abietis, eastern spruce gall adelgid, introduced from Europe, forms distinctive pineapple-shaped galls on several native spruce species. While not considered a major forest pest, it weakens trees and increases susceptibility to additional stressors. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects. Whole genome sequencing was performed on both species to aid in development of targeted solutions that may minimize ecological impact. Adelges abietis was sequenced using barcoded linked-reads from 30 pooled individuals, with Hi-C scaffolding performed using data from a single individual collected from the same host plant. Adelges tsugae used long-read sequencing from pooled nymphs. The assembled A. tsugae and A. abietis genomes, pooled from several parthenogenetic females, are 220.75 Mbp and 253.16 Mbp, respectively. Each consists of eight autosomal chromosomes, as well as two sex chromosomes (X1/X2), supporting the XX-XO sex determination system. The genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 12,060 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis of proteins across 29 hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family evolution analysis with CAFE revealed lineage-specific expansions in immune-related aminopeptidases (ERAP1) and juvenile hormone binding proteins (JHBP), contractions in juvenile hormone acid methyltransferases (JHAMT), and conservation of nicotinic acetylcholine receptors (nAChR). These genes were explored as candidate families towards a long-term objective of developing adelgid-selective insecticides. Structural comparisons of proteins across seven focal species (Adelges tsugae, Adelges abietis, Adelges cooleyi, Rhopalosiphum maidis, Apis mellifera, Danaus plexippus, and Drosophila melanogaster) revealed high conservation of nAChR and ERAP1, while JHAMT exhibited species-specific structural divergence. The potential of JHAMT as a lineage-specific target for pest control was explored through virtual screening of drugs and pesticides.

bioRxiv preprint: https://doi.org/10.1101/2024.11.21.624573

View Publication Page
08/22/25 | An essential experimental control for functional connectivity mapping with optogenetics.
David Tadres , Hiroshi M. Shiozaki , Ibrahim Tastekin , David L. Stern , Matthieu Louis
Genetics. 2025 Aug 22:. doi: 10.1093/genetics/iyaf174

To establish functional connectivity between two candidate neurons that might form a circuit element, a common approach is to activate an optogenetic tool such as Chrimson in the candidate pre-synaptic neuron and monitor fluorescence of the calcium-sensitive indicator GCaMP in a candidate post-synaptic neuron. While performing such experiments in Drosophila, we found that low levels of leaky Chrimson expression can lead to strong artifactual GCaMP signals in presumptive postsynaptic neurons even when Chrimson is not intentionally expressed in any particular neurons. Withholding all-trans retinal, the chromophore required as a co-factor for Chrimson response to light, eliminates GCaMP signal but does not provide an experimental control for leaky Chrimson expression. Leaky Chrimson expression appears to be an inherent feature of current Chrimson transgenes, since artifactual connectivity was detected with Chrimson transgenes integrated into multiple genomic locations. While these false-positive signals may complicate the interpretation of functional connectivity experiments, we illustrate how a no-Gal4 negative control improves interpretability of functional connectivity assays. We also propose a simple but effective procedure to identify experimental conditions that minimize potentially incorrect interpretations caused by leaky Chrimson expression.

View Publication Page
05/06/25 | Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster
Erica Ehrhardt , Samuel C Whitehead , Shigehiro Namiki , Ryo Minegishi , Igor Siwanowicz , Kai Feng , Hideo Otsuna , FlyLight Project Team , Geoffrey W Meissner , David Stern , Jim Truman , David Shepherd , Michael H. Dickinson , Kei Ito , Barry J Dickson , Itai Cohen , Gwyneth M Card , Wyatt Korff
eLife. 2025 May 06:. doi: 10.7554/eLife.106548.1

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.

View Publication Page
04/04/25 | A Bayesian Model to Count the Number of Two-State Emitters in a Diffraction Limited Spot.
Hillsley A, Stein J, Tillberg PW, Stern DL, Funke J
Nano Lett. 2025 Apr 04:. doi: 10.1021/acs.nanolett.4c06304

We address the problem of inferring the number of independently blinking fluorescent light emitters, when only their combined intensity contributions can be observed. This problem occurs regularly in light microscopy of objects smaller than the diffraction limit, where one wishes to count the number of fluorescently labeled subunits. Our proposed solution directly models the photophysics of the system, as well as the blinking kinetics of the fluorescent emitters as a fully differentiable hidden Markov model, estimating a posterior distribution of the total number of emitters. We show that our model is more accurate and increases the range of countable subunits by a factor of 2 compared to current state-of-the-art methods. Furthermore, we demonstrate that our model can be used to investigate the effect of blinking kinetics on counting ability and therefore can inform optimal experimental conditions.

View Publication Page
03/07/25 | Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus
Lollar MJ, Kim E, Stern DL, Pool JE
G3 Genes|Genomes|Genetics. 2025 Mar 07:. doi: 10.1093/g3journal/jkaf050

The courtship song of Drosophila melanogaster has long served as an excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged approximately 13,000 years ago, show significant genetic differentiation in the use of slow versus fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis we detected a single strong QTL underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with six additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.

bioRxiv Preprint: https://www.biorxiv.org/content/early/2024/05/17/2024.05.14.594231

View Publication Page
02/24/25 | An updated catalogue of split-GAL4 driver lines for descending neurons in Drosophila melanogaster
Zung JL, Namiki S, Meissner GW, Costa M, Eichler K, Stürner T, Jefferis GS, Managan C, FlyLight Project Team , Korff W, Card GM
bioRxiv. 2025 Feb 24:. doi: 10.1101/2025.02.22.639679

Descending neurons (DNs) occupy a key position in the sensorimotor hierarchy, conveying signals from the brain to the rest of the body below the neck. In Drosophila melanogaster flies, approximately 480 DN cell types have been described from electron-microscopy image datasets. Genetic access to these cell types is crucial for further investigation of their role in generating behaviour. We previously conducted the first large-scale survey of Drosophila melanogaster DNs, describing 98 unique cell types from light microscopy and generating cell-type-specific split-Gal4 driver lines for 65 of them. Here, we extend our previous work, describing the morphology of 137 additional DN types from light microscopy, bringing the total number DN types identified in light microscopy datasets to 235, or nearly 50%. In addition, we produced 500 new sparse split-Gal4 driver lines and compiled a list of previously published DN lines from the literature for a combined list of 738 split-Gal4 driver lines targeting 171 DN types.

View Publication Page
11/26/24 | Genomes of two invasive Adelges species (hemlock woolly adelgid and pineapple gall adelgid) enable characterization of nicotinic acetylcholine receptors
Glendening AM, Stephens C, Vuruputoor VS, Stern DL, Hogenhout SA, Mathers TC, Chaganti T, Pauloski N, Cernak TA, Wegrzyn JL, Fetter KC
bioRxiv. 2024 Nov 26:. doi: 10.1101/2024.11.21.624573

Two invasive hemipteran adelgids cause widespread damage to North American conifers. Adelges tsugae (the hemlock woolly adelgid) has decimated Tsuga canadensis and Tsuga caroliniana (the Eastern and Carolina hemlocks, respectively). A. tsugae was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly. A. abietis, introduced from Europe, makes pineapple galls on several North American spruce species, and weakens trees, increasing their susceptibility to other stresses. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects and the development of more selective chemical treatments could improve control methods and minimize ecological damage. Whole genome sequencing was performed on both species to aid in development of targeted pest control solutions and improve species conservation. The assembled A. tsugae and A. abietis genomes are 231.71 Mbp and 290.39 Mbp, respectively, each consisting of nine chromosomes and both genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 14,118 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis across 29 Hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family expansions in A. abietis included ABC transporters and carboxypeptidases involved in carbohydrate metabolism, while both species showed contractions in core histone families and oxidoreductase pathways. Gene family expansions in A. tsugae highlighted families associated with the regulation of cell differentiation and development (survival motor protein, SMN; juvenile hormone acid methyltransferase JHAMT) as well as those that may be involved in the suppression of plant immunity (clip domain serine protease-D, CLIPD; Endoplasmic reticulum aminopeptidase 1, ERAP1). Among the analyzed gene families, Nicotinic acetylcholine receptors (nAChRs) maintained consistent copy numbers and structural features across species, a finding particularly relevant given their role as targets for current forestry management insecticides. Detailed phylogenetic analysis of nAChR subunits across adelgids and other ecologically important insects revealed remarkable conservation in both sequence composition and predicted structural features, providing crucial insights for the development of more selective pest control strategies.

View Publication Page
08/28/24 | Activity of nested neural circuits drives different courtship songs in Drosophila.
Shiozaki HM, Wang K, Lillvis JL, Xu M, Dickson BJ, Stern DL
Nat Neurosci. 2024 Aug 28:. doi: 10.1038/s41593-024-01738-9

Motor systems implement diverse motor programs to pattern behavioral sequences, yet how different motor actions are controlled on a moment-by-moment basis remains unclear. Here, we investigated the neural circuit mechanisms underlying the control of distinct courtship songs in Drosophila. Courting males rapidly alternate between two types of song: pulse and sine. By recording calcium signals in the ventral nerve cord in singing flies, we found that one neural population is active during both songs, whereas an expanded neural population, which includes neurons from the first population, is active during pulse song. Brain recordings showed that this nested activation pattern is present in two descending pathways required for singing. Connectomic analysis reveals that these two descending pathways provide structured input to ventral nerve cord neurons in a manner consistent with their activation patterns. These results suggest that nested premotor circuit activity, directed by distinct descending signals, enables rapid switching between motor actions.

View Publication Page
08/15/24 | Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking
Suguru Takagi , Liliane Abuin , S. David Stupski , J. Roman Arguello , Lucia Prieto-Godino , David L. Stern , Steeve Cruchet , Raquel Álvarez-Ocaña , Carl F. R. Wienecke , Floris van Breugel , Thomas O. Auer , Richard Benton
Nat Commun. 2024 Aug 15;15(1):7041. doi: 10.1038/s41467-024-50808-w

The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.

View Publication Page