Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Stern Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

152 Publications

Showing 101-110 of 152 results
12/01/93 | Nonfloral sources of chemicals that attract male euglossine bees (Apidae: Euglossini).
Whitten WM, Young AM, Stern DL
J Chem Ecol. 1993 Dec;19(12):3017-27. doi: 10.1007/BF00980599

We present chemical analysis of four rotten or fungus-infected logs that attracted fragrance-collecting male euglossine bees. Eight of the 10 volatile compounds detected have never been found in the fragrances of orchids pollinated by male euglossine bees. Nonfloral sources of chemicals such as rotting wood may constitute an important fragrance resource for male bees. Since rotten logs produce large quantities of chemicals over long periods of time, such nonfloral sources might be more important than flowers as a source of certain fragrances for some euglossine bee species. Fragrance collecting in euglossine bees might have evolved originally in relation with rotting wood rather than flowers.

View Publication Page
11/02/17 | Nuclear microenvironments modulate transcription from low-affinity enhancers.
Tsai A, Muthusamy AK, Alves MR, Lavis LD, Singer RH, Stern DL, Crocker J
eLife. 2017 Nov 02;6:. doi: 10.7554/eLife.28975

Transcription factors bind low-affinity DNA sequences for only short durations. It is not clear how brief, low-affinity interactions can drive efficient transcription. Here we report that the transcription factor Ultrabithorax (Ubx) utilizes low-affinity binding sites in the Drosophila melanogastershavenbaby (svb) locus and related enhancers in nuclear microenvironments of high Ubx concentrations. Related enhancers colocalize to the same microenvironments independently of their chromosomal location, suggesting that microenvironments are highly differentiated transcription domains. Manipulating the affinity of svb enhancers revealed an inverse relationship between enhancer affinity and Ubx concentration required for transcriptional activation. The Ubx cofactor, Homothorax (Hth), was co-enriched with Ubx near enhancers that require Hth, even though Ubx and Hth did not co-localize throughout the nucleus. Thus, microenvironments of high local transcription factor and cofactor concentrations could help low-affinity sites overcome their kinetic inefficiency. Mechanisms that generate these microenvironments could be a general feature of eukaryotic transcriptional regulation.

View Publication Page
12/09/17 | Optogenetic dissection of descending behavioral control in Drosophila.
Cande J, Namiki S, Qiu J, Korff W, Card GM, Shaevitz JW, Stern DL, Berman GJ
eLife. 2018:e34275. doi: 10.7554/eLife.34275

In most animals, the brain makes behavioral decisions that are transmitted by descending neurons to the nerve cord circuitry that produces behaviors. In insects, only a few descending neurons have been associated with specific behaviors. To explore how descending neurons control an insect's movements, we developed a novel method to systematically assay the behavioral effects of activating individual neurons on freely behaving terrestrial D. melanogaster. We calculated a two-dimensional representation of the entire behavior space explored by these flies and we associated descending neurons with specific behaviors by identifying regions of this space that were visited with increased frequency during optogenetic activation. Applying this approach across a large collection of descending neurons, we found that (1) activation of most of the descending neurons drove stereotyped behaviors, (2) in many cases multiple descending neurons activated similar behaviors, and (3) optogenetically-activated behaviors were often dependent on the behavioral state prior to activation.

View Publication Page
07/22/10 | Phenotypic robustness conferred by apparently redundant transcriptional enhancers.
Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL
Nature. 2010 Jul 22;466(7305):490-3. doi: 10.1038/nature09158

Genes include cis-regulatory regions that contain transcriptional enhancers. Recent reports have shown that developmental genes often possess multiple discrete enhancer modules that drive transcription in similar spatio-temporal patterns: primary enhancers located near the basal promoter and secondary, or ’shadow’, enhancers located at more remote positions. It has been proposed that the seemingly redundant activity of primary and secondary enhancers contributes to phenotypic robustness. We tested this hypothesis by generating a deficiency that removes two newly discovered enhancers of shavenbaby (svb, a transcript of the ovo locus), a gene encoding a transcription factor that directs development of Drosophila larval trichomes. At optimal temperatures for embryonic development, this deficiency causes minor defects in trichome patterning. In embryos that develop at both low and high extreme temperatures, however, absence of these secondary enhancers leads to extensive loss of trichomes. These temperature-dependent defects can be rescued by a transgene carrying a secondary enhancer driving transcription of the svb cDNA. Finally, removal of one copy of wingless, a gene required for normal trichome patterning, causes a similar loss of trichomes only in flies lacking the secondary enhancers. These results support the hypothesis that secondary enhancers contribute to phenotypic robustness in the face of environmental and genetic variability.

View Publication Page
04/22/95 | Phylogenetic evidence that aphids, rather than plants, determine gall morphology
David L Stern
Proceedings of the Royal Society of London. Series B: Biological Sciences;260(1357):85-89. doi: 10.1098/rspb.1995.0063

Many diverse taxa have evolved independently the habit of living in plant galls. For all but some viral galls, it is unknown whether plants produce galls as a specialized plant reaction to certain types of herbivory, or whether herbivores direct gall development. Here I present a phylogenetic analysis of gallforming cerataphidine aphids which demonstrates that gall morphology is extremely conservative with respect to aphid phylogeny, but variable with respect to plant taxonomy. In addition, the phylogeny reveals at least three host plant switches where the aphids produce galls most similar to the galls of their closest relatives, rather than galls similar to the galls of aphids already present on the host plant. These results suggest that aphids determine the details of gall morphology essentially extending their phenotype to include plant material. Based on this and other evidence, I suggest that the aphids and other galling insects manipulate latent plant developmental programmes to produce modified atavistic plant morphologies rather than create new forms de novo.

View Publication Page
02/01/98 | Phylogeny of the Tribe Cerataphidini (Homoptera) and the Evolution of the Horned Soldier Aphids
David L Stern
Evolution. 02/1998;52:155-165

The horned soldier aphids of the Cerataphidini, unlike most social insects that reside in nests, live on the open surface of plants. The lack of a nest and other obvious ecological correlates makes it unclear why secondary-host soldiers might have evolved. Here I present a molecular phylogenetic analysis of 32 species of the Cerataphidini, including 10 species from the genera Ceratovacuna and Pseudoregma that produce horned soldiers. The phylogeny suggests that horned soldiers evolved once and were lost once or twice. Most horned soldiers are a morphologically specialized caste and two species that have unspecialized soldiers are independently derived from species with specialized castes. The genus Ceratovacuna appears to have undergone a relatively rapid radiation. Mapping secondary-host plants and geographic ranges onto the phylogeny suggests that bamboos were the ancestral secondary-host plants and that the Asian tropics and subtropics were the ancestral geographic regions for the genera Astegopteryx, Ceratoglyphina, Ceratovacuna Chaitoregma, and Pseudoregma and possibly for the entire tribe. There is evidence for vicariant events that separate the tropical and subtropical lineages in all of the major lineages of the tribe and for dispersal of some lineages. Based on these results, I present hypotheses for the causes and consequences of horned-soldier evolution.

View Publication Page
05/01/19 | Pleiotropic effects of ebony and tan on pigmentation and cuticular hydrocarbon composition in Drosophila melanogaster.
Massey JH, Akiyama N, Bien T, Dreisewerd K, Wittkopp PJ, Yew JY, Takahashi A
Frontiers in Physiology. 05/2019;10:518. doi: 10.3389/fphys.2019.00518

Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, and , which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in females. More specifically, we report that loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in mutants, making the CHC profiles similar to those seen in mutants. These observations suggest that genetic variation affecting and/or activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of and expression in newly eclosed adults in a manner consistent with the and mutant phenotypes. These data suggest that the pleiotropic effects of and might contribute to covariation of pigmentation and CHC profiles in .

View Publication Page
12/01/05 | Pleiotropic functions of a conserved insect-specific Hox peptide motif.
Hittinger CT, Stern DL, Carroll SB
Development. 2005 Dec;132(23):5261-70. doi: 10.1242/dev.02146

The proteins that regulate developmental processes in animals have generally been well conserved during evolution. A few cases are known where protein activities have functionally evolved. These rare examples raise the issue of how highly conserved regulatory proteins with many roles evolve new functions while maintaining old functions. We have investigated this by analyzing the function of the ;QA' peptide motif of the Hox protein Ultrabithorax (Ubx), a motif that has been conserved throughout insect evolution since its establishment early in the lineage. We precisely deleted the QA motif at the endogenous locus via allelic replacement in Drosophila melanogaster. Although the QA motif was originally characterized as involved in the repression of limb formation, we have found that it is highly pleiotropic. Curiously, deleting the QA motif had strong effects in some tissues while barely affecting others, suggesting that QA function is preferentially required for a subset of Ubx target genes. QA deletion homozygotes had a normal complement of limbs, but, at reduced doses of Ubx and the abdominal-A (abd-A) Hox gene, ectopic limb primordia and adult abdominal limbs formed when the QA motif was absent. These results show that redundancy and the additive contributions of activity-regulating peptide motifs play important roles in moderating the phenotypic consequences of Hox protein evolution, and that pleiotropic peptide motifs that contribute quantitatively to several functions are subject to intense purifying selection.

View Publication Page
09/14/17 | Pleiotropy in enhancer function is encoded through diverse genetic architectures.
Preger-Ben Noon E, Sabarís G, Ortiz DM, Sager J, Liebowitz A, Stern DL, Frankel N
bioRxiv. 2017 Sep 14:. doi: 10.1101/188532

Developmental genes can have complex cis-regulatory regions, with multiple enhancers scattered across stretches of DNA spanning tens or hundreds of kilobases. Early work revealed remarkable modularity of enhancers, where distinct regions of DNA, bound by combinations of transcription factors, drive gene expression in defined spatio-temporal domains. Nevertheless, a few reports have shown that enhancer function may be required in multiple developmental stages, implying that regulatory elements can be pleiotropic. In these cases, it is not clear whether the pleiotropic enhancers employ the same transcription factor binding sites to drive expression at multiple developmental stages or whether enhancers function as chromatin scaffolds, where independent sets of transcription factor binding sites act at different stages. In this work we have studied the activity of the enhancers of the shavenbaby gene throughout D. melanogaster development. We found that all seven shavenbaby enhancers drive gene expression in multiple tissues and developmental stages at varying levels of redundancy. We have explored how this pleiotropy is encoded in two of these enhancers. In one enhancer, the same transcription factor binding sites contribute to embryonic and pupal expression, whereas for a second enhancer, these roles are largely encoded by distinct transcription factor binding sites. Our data suggest that enhancer pleiotropy might be a common feature of cis-regulatory regions of developmental genes and that this pleiotropy can be encoded through multiple genetic architectures.

View Publication Page
04/01/13 | Potential Patterning Differences Underlying Oviparous and Viviparous Development in the Pea Aphid
R Bickel , H Cleveland , J Barkas , N Belletier , DL Stern , GK Davis
Society for Integrative and Comparative Biology. 01/2013;53:E247-E247

The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued, discrete, alternate phenotypes (polyphenisms) during its life cycle. In the case of the reproductive polyphenism, differences in day length determine whether mothers will produce daughters that reproduce either sexually by laying fertilized eggs (oviparous sexual reproduction), or asexually by allowing oocytes to complete embryogenesis within the mother without fertilization (viviparous parthenogenesis). Oocytes and embryos that are produced asexually develop more rapidly, are yolk-free, and much smaller than oocytes and embryos that are produced sexually. Perhaps most striking, the process of oocyte differentiation is truncated in the case of asexual/viviparous development, potentially precluding interactions between the oocyte and surrounding follicle cells that might take place during sexual/oviparous development. Given the important patterning roles that oocyte-follicle cell interactions play in Drosophila, these overt differences suggest that there may be underlying differences in the molecular mechanisms of pattern formation. We have found differences in the expression of homologs of torso-like and tailless, as well as activated MAP kinase, suggesting that there are important differences in the hemipteran version of the terminal patterning system between viviparous and oviparous development. Establishing such differences in the expression of patterning genes between these developmental modes is a first step toward understanding how a single genome manages to direct patterning events in such different embryological contexts.

View Publication Page