Main Menu (Mobile)- Block
- Overview
- 
                        Support Teams                           - Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
 
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium

Abstract
BACKGROUND: Kidney epithelial cells perform complex vectorial fluid and solute transport at high volumes and rapid rates. Their structural organization both reflects and enables these sophisticated physiological functions. However, our understanding of the nanoscale spatial organization and intracellular ultrastructure that underlies these crucial cellular functions remains limited.
METHODS: To address this knowledge gap, we generated and reconstructed an extensive electron microscopic dataset of renal proximal tubule (PT) epithelial cells at isotropic resolutions down to 4nm. We employed artificial intelligence-based segmentation tools to identify, trace, and measure all major subcellular components. We complemented this analysis with immunofluorescence microscopy to connect subcellular architecture to biochemical function.
RESULTS: Our ultrastructural analysis revealed complex organization of membrane-bound compartments in proximal tubule cells. The apical endocytic system featured deep invaginations connected to an anastomosing meshwork of dense apical tubules, rather than discrete structures. The endoplasmic reticulum displayed distinct structural domains: fenestrated sheets in the basolateral region and smaller, disconnected clusters in the subapical region. We identified, quantified, and visualized membrane contact sites between endoplasmic reticulum, plasma membrane, mitochondria, and apical endocytic compartments. Immunofluorescence microscopy demonstrated distinct localization patterns for endoplasmic reticulum resident proteins at mitochondrial and plasma membrane interfaces.
CONCLUSIONS: This study provides novel insights into proximal tubule cell organization, revealing specialized compartmentalization and unexpected connections between membrane-bound organelles. We identified previously uncharacterized structures, including mitochondria-plasma membrane bridges and an interconnected endocytic meshwork, suggesting mechanisms for efficient energy distribution, cargo processing and structural support. Morphological differences between 4nm and 8nm datasets indicate subsegment-specific specializations within the proximal tubule. This comprehensive open-source dataset provides a foundation for understanding how subcellular architecture supports specialized epithelial function in health and disease.


