Filter
Associated Lab
- Ahrens Lab (4) Apply Ahrens Lab filter
- Aso Lab (4) Apply Aso Lab filter
- Betzig Lab (6) Apply Betzig Lab filter
- Bock Lab (3) Apply Bock Lab filter
- Branson Lab (5) Apply Branson Lab filter
- Card Lab (4) Apply Card Lab filter
- Cardona Lab (6) Apply Cardona Lab filter
- Clapham Lab (4) Apply Clapham Lab filter
- Darshan Lab (1) Apply Darshan Lab filter
- Dickson Lab (2) Apply Dickson Lab filter
- Druckmann Lab (4) Apply Druckmann Lab filter
- Dudman Lab (3) Apply Dudman Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Fetter Lab (4) Apply Fetter Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Freeman Lab (1) Apply Freeman Lab filter
- Funke Lab (4) Apply Funke Lab filter
- Gonen Lab (9) Apply Gonen Lab filter
- Grigorieff Lab (5) Apply Grigorieff Lab filter
- Harris Lab (5) Apply Harris Lab filter
- Heberlein Lab (3) Apply Heberlein Lab filter
- Hermundstad Lab (1) Apply Hermundstad Lab filter
- Hess Lab (3) Apply Hess Lab filter
- Jayaraman Lab (3) Apply Jayaraman Lab filter
- Ji Lab (5) Apply Ji Lab filter
- Karpova Lab (2) Apply Karpova Lab filter
- Keleman Lab (1) Apply Keleman Lab filter
- Keller Lab (6) Apply Keller Lab filter
- Lavis Lab (12) Apply Lavis Lab filter
- Lee (Albert) Lab (2) Apply Lee (Albert) Lab filter
- Lippincott-Schwartz Lab (11) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (3) Apply Liu (Zhe) Lab filter
- Looger Lab (8) Apply Looger Lab filter
- Magee Lab (1) Apply Magee Lab filter
- Menon Lab (1) Apply Menon Lab filter
- Murphy Lab (1) Apply Murphy Lab filter
- Pachitariu Lab (2) Apply Pachitariu Lab filter
- Pavlopoulos Lab (2) Apply Pavlopoulos Lab filter
- Podgorski Lab (2) Apply Podgorski Lab filter
- Reiser Lab (4) Apply Reiser Lab filter
- Riddiford Lab (1) Apply Riddiford Lab filter
- Romani Lab (3) Apply Romani Lab filter
- Rubin Lab (7) Apply Rubin Lab filter
- Saalfeld Lab (5) Apply Saalfeld Lab filter
- Scheffer Lab (4) Apply Scheffer Lab filter
- Schreiter Lab (4) Apply Schreiter Lab filter
- Singer Lab (5) Apply Singer Lab filter
- Spruston Lab (8) Apply Spruston Lab filter
- Stern Lab (6) Apply Stern Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (11) Apply Svoboda Lab filter
- Tervo Lab (2) Apply Tervo Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Truman Lab (8) Apply Truman Lab filter
- Turaga Lab (7) Apply Turaga Lab filter
- Zlatic Lab (5) Apply Zlatic Lab filter
Associated Project Team
Associated Support Team
- Anatomy and Histology (3) Apply Anatomy and Histology filter
- Cryo-Electron Microscopy (6) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (1) Apply Electron Microscopy filter
- Gene Targeting and Transgenics (3) Apply Gene Targeting and Transgenics filter
- Invertebrate Shared Resource (1) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (4) Apply Janelia Experimental Technology filter
- Quantitative Genomics (4) Apply Quantitative Genomics filter
- Scientific Computing Software (9) Apply Scientific Computing Software filter
- Vivarium (2) Apply Vivarium filter
Publication Date
- December 2018 (13) Apply December 2018 filter
- November 2018 (18) Apply November 2018 filter
- October 2018 (25) Apply October 2018 filter
- September 2018 (12) Apply September 2018 filter
- August 2018 (23) Apply August 2018 filter
- July 2018 (14) Apply July 2018 filter
- June 2018 (20) Apply June 2018 filter
- May 2018 (16) Apply May 2018 filter
- April 2018 (22) Apply April 2018 filter
- March 2018 (19) Apply March 2018 filter
- February 2018 (12) Apply February 2018 filter
- January 2018 (12) Apply January 2018 filter
- Remove 2018 filter 2018
206 Janelia Publications
Showing 1-10 of 206 resultsNew methods in stem cell 3D organoid tissue culture, advanced imaging and big data image analytics now allow tissue scale 4D cell biology, but currently available analytical pipelines are inadequate for handing and analyzing the resulting gigabytes and terabytes of high-content imaging data. We expressed fluorescent protein fusions of clathrin and dynamin2 at endogenous levels in genome-edited human embryonic stem cells, which were differentiated into hESC-derived intestinal epithelial organoids. Lattice Light-Sheet Imaging with adaptive optics (AO-LLSM) allowed us to image large volumes of these organoids (70µm x 60µm x 40µm xyz) at 5.7s/frame. We developed an open source data analysis package termed pyLattice to process the resulting large (∼60Gb) movie datasets and to track clathrin-mediated endocytosis (CME) events. CME tracks could be recorded from ∼35 cells at a time, resulting in ∼4000 processed tracks per movie. Based on their localization in the organoid, we classified CME tracks into apical, lateral and basal events and found that CME dynamics are similar for all three classes, despite reported differences in membrane tension. pyLattice coupled with AO-LLSM makes possible quantitative, high temporal and spatial resolution analysis of subcellular events within tissues. Movie S1 Movie S1 Thresholded 3D AO-LLSM data of an intestinal epithelial organoid showing clathrin (red) and dynamin2 (green) puncta in surface depiction. The movie zooms out from a single clathrin mediated endocytosis event that shows both clathrin and dynamin2 at the same location to eventually show the whole AO-LLSM field of view. Nuclear envelopes and the outer membranes of the tissue are depicted in transparent white. Movie S2 Movie S2 Thresholded 3D AO-LLSM data of an intestinal epithelial organoid showing clathrin (red) and dynamin2 (green) puncta in surface depiction. The movie rotates the AO-LLSM field of view. Nuclear envelopes and the outer membranes of the tissue are depicted in transparent white. Movie S3 Movie S3 Thresholded 3D AO-LLSM data of an intestinal epithelial organoid. The curved surface is of the spherical organoid is visible as the movie rotates. Clathrin puncta are visible throughout the tissue (white). Movie S4 Movie S4 The detection step in the data processing pipeline retrieves all clathrin puncta in the volume. Detected puncta are marked with a cube (blue). Movie S5 Movie S5 Zoom on one clathrin puncta in the thresholded 3D dataset. The punctum of interest is marked with a blue cube. Other puncta are also visible. Movie S6 Movie S6 Zoom on the same clathrin puncta as in M3 in non-thresholded 3D data. The surrounding fluorescence is visible as a transparent cloud.
Understanding how neural circuits control behavior requires monitoring a large population of neurons with high spatial resolution and volume rate. Here we report an axicon-based Bessel beam module with continuously adjustable depth of focus (CADoF), that turns frame rate into volume rate by extending the excitation focus in the axial direction while maintaining high lateral resolutions. Cost-effective and compact, this CADoF Bessel module can be easily integrated into existing two-photon fluorescence microscopes. Simply translating one of the relay lenses along its optical axis enabled continuous adjustment of the axial length of the Bessel focus. We used this module to simultaneously monitor activity of spinal projection neurons extending over 60 µm depth in larval zebrafish at 50 Hz volume rate with adjustable axial extent of the imaged volume.
Big imaging data is becoming more prominent in brain sciences across spatiotemporal scales and phylogenies. We have developed a computational ecosystem that enables storage, visualization, and analysis of these data in the cloud, thusfar spanning 20+ publications and 100+ terabytes including nanoscale ultrastructure, microscale synaptogenetic diversity, and mesoscale whole brain connectivity, making NeuroData the largest and most diverse open repository of brain data.
Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly at synaptic resolution. To validate the dataset, we traced brain-spanning circuitry involving the mushroom body (MB), which has been extensively studied for its role in learning. All inputs to Kenyon cells (KCs), the intrinsic neurons of the MB, were mapped, revealing a previously unknown cell type, postsynaptic partners of KC dendrites, and unexpected clustering of olfactory projection neurons. These reconstructions show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience..
What can we learn from a connectome? We constructed a simplified model of the first two stages of the fly visual system, the lamina and medulla. The resulting hexagonal lattice convolutional network was trained using backpropagation through time to perform object tracking in natural scene videos. Networks initialized with weights from connectome reconstructions automatically discovered well-known orientation and direction selectivity properties in T4 neurons and their inputs, while networks initialized at random did not. Our work is the first demonstration, that knowledge of the connectome can enable in silico predictions of the functional properties of individual neurons in a circuit, leading to an understanding of circuit function from structure alone.
Persistent and ramping neural activity in the frontal cortex anticipates specific movements. Preparatory activity is distributed across several brain regions, but it is unclear which brain areas are involved and how this activity is mediated by multi-regional interactions. The cerebellum is thought to be primarily involved in the short-timescale control of movement; however, roles for this structure in cognitive processes have also been proposed. In humans, cerebellar damage can cause defects in planning and working memory. Here we show that persistent representation of information in the frontal cortex during motor planning is dependent on the cerebellum. Mice performed a sensory discrimination task in which they used short-term memory to plan a future directional movement. A transient perturbation in the medial deep cerebellar nucleus (fastigial nucleus) disrupted subsequent correct responses without hampering movement execution. Preparatory activity was observed in both the frontal cortex and the cerebellar nuclei, seconds before the onset of movement. The silencing of frontal cortex activity abolished preparatory activity in the cerebellar nuclei, and fastigial activity was necessary to maintain cortical preparatory activity. Fastigial output selectively targeted the behaviourally relevant part of the frontal cortex through the thalamus, thus closing a cortico-cerebellar loop. Our results support the view that persistent neural dynamics during motor planning is maintained by neural circuits that span multiple brain regions, and that cerebellar computations extend beyond online motor control.
Fruit flies recognize hundreds of ecologically relevant odors and respond appropriately to them. The complexity, redundancy and interconnectedness of the olfactory machinery complicate efforts to pinpoint the functional contributions of any component neuron or receptor to behavior. Some contributions can only be elucidated in flies that carry multiple mutations and transgenes, but the production of such flies is currently labor-intensive and time-consuming. Here, we describe a set of transgenic flies that express the GAL80 in specific olfactory sensory neurons (). The GAL80s effectively and specifically subtract the activities of GAL4-driven transgenes that impart anatomical and physiological phenotypes. can allow researchers to efficiently activate only one or a few types of functional neurons in an otherwise nonfunctional olfactory background. Such experiments will improve our understanding of the mechanistic connections between odorant inputs and behavioral outputs at the resolution of only a few functional neurons.
BACKGROUND: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are indispensable tools for measuring Ca2+ dynamics and neuronal activities in vitro and in vivo. Red fluorescent protein (RFP)-based GECIs have inherent advantages relative to green fluorescent protein-based GECIs due to the longer wavelength light used for excitation. Longer wavelength light is associated with decreased phototoxicity and deeper penetration through tissue. Red GECI can also enable multicolor visualization with blue- or cyan-excitable fluorophores. RESULTS: Here we report the development, structure, and validation of a new RFP-based GECI, K-GECO1, based on a circularly permutated RFP derived from the sea anemone Entacmaea quadricolor. We have characterized the performance of K-GECO1 in cultured HeLa cells, dissociated neurons, stem-cell-derived cardiomyocytes, organotypic brain slices, zebrafish spinal cord in vivo, and mouse brain in vivo. CONCLUSION: K-GECO1 is the archetype of a new lineage of GECIs based on the RFP eqFP578 scaffold. It offers high sensitivity and fast kinetics, similar or better than those of current state-of-the-art indicators, with diminished lysosomal accumulation and minimal blue-light photoactivation. Further refinements of the K-GECO1 lineage could lead to further improved variants with overall performance that exceeds that of the most highly optimized red GECIs.
Hunger and pain are two competing signals that individuals must resolve to ensure survival. However, the neural processes that prioritize conflicting survival needs are poorly understood. We discovered that hunger attenuates behavioral responses and affective properties of inflammatory pain without altering acute nociceptive responses. This effect is centrally controlled, as activity in hunger-sensitive agouti-related protein (AgRP)-expressing neurons abrogates inflammatory pain. Systematic analysis of AgRP projection subpopulations revealed that the neural processing of hunger and inflammatory pain converge in the hindbrain parabrachial nucleus (PBN). Strikingly, activity in AgRP → PBN neurons blocked the behavioral response to inflammatory pain as effectively as hunger or analgesics. The anti-nociceptive effect of hunger is mediated by neuropeptide Y (NPY) signaling in the PBN. By investigating the intersection between hunger and pain, we have identified a neural circuit that mediates competing survival needs and uncovered NPY Y1 receptor signaling in the PBN as a target for pain suppression.