Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

52 Janelia Publications

Showing 1-10 of 52 results
Your Criteria:
    01/10/25 | A critical initialization for biological neural networks
    Pachitariu M, Zhong L, Gracias A, Minisi A, Lopez C, Stringer C
    bioRxiv. 01/2025:. doi: 10.1101/2025.01.10.632397

    Artificial neural networks learn faster if they are initialized well. Good initializations can generate high-dimensional macroscopic dynamics with long timescales. It is not known if biological neural networks have similar properties. Here we show that the eigenvalue spectrum and dynamical properties of large-scale neural recordings in mice (two-photon and electrophysiology) are similar to those produced by linear dynamics governed by a random symmetric matrix that is critically normalized. An exception was hippocampal area CA1: population activity in this area resembled an efficient, uncorrelated neural code, which may be optimized for information storage capacity. Global emergent activity modes persisted in simulations with sparse, clustered or spatial connectivity. We hypothesize that the spontaneous neural activity reflects a critical initialization of whole-brain neural circuits that is optimized for learning time-dependent tasks.

    View Publication Page
    01/06/25 | A split-GAL4 driver line resource for Drosophila neuron types
    Meissner GW, Vannan A, Jeter J, Close K, Depasquale GM, Dorman Z, Forster K, Beringer JA, Gibney TV, Hausenfluck JH, He Y, Henderson K, Johnson L, Johnston RM, Ihrke G, Iyer N, Lazarus R, Lee K, Li H, Liaw H, Melton B, Miller S, Motaher R, Novak A, Ogundeyi O, Petruncio A, Price J, Protopapas S, Tae S, Taylor J, Vorimo R, Yarbrough B, Zeng KX, Zugates CT, Dionne H, Angstadt C, Ashley K, Cavallaro A, Dang T, Gonzalez GA, Hibbard KL, Huang C, Kao J, Laverty T, Mercer M, Perez B, Pitts S, Ruiz D, Vallanadu V, Zheng GZ, Goina C, Otsuna H, Rokicki K, Svirskas RR, Cheong HS, Dolan M, Ehrhardt E, Feng K, El Galfi B, Goldammer J, Huston SJ, Hu N, Ito M, McKellar C, minegishi r, Namiki S, Nern A, Schretter CE, Sterne GR, Venkatasubramanian L, Wang K, Wolff T, Wu M, George R, Malkesman O, Aso Y, Card GM, Dickson BJ, Korff W, Ito K, Truman JW, Zlatic M, Rubin GM
    03/03/25 | A theory of rapid behavioral inferences under the pressure of time
    Hermundstad AM, Młynarski WF
    bioRxiv. 2025 Mar 03:. doi: 10.1101/2024.08.26.609738

    To survive, animals must be able quickly infer the state of their surroundings. For example, to successfully escape an approaching predator, prey must quickly estimate the direction of approach from incoming sensory stimuli and guide their behavior accordingly. Such rapid inferences are particularly challenging because the animal has only a brief window of time to gather sensory stimuli, and yet the accuracy of inference is critical for survival. Due to evolutionary pressures, nervous systems have likely evolved effective computational strategies that enable accurate inferences under strong time limitations. Traditionally, the relationship between the speed and accuracy of inference has been described by the “speed-accuracy tradeoff” (SAT), which quantifies how the average performance of an ideal observer improves as the observer has more time to collect incoming stimuli. While this trial-averaged description can reasonably account for individual inferences made over long timescales, it does not capture individual inferences on short timescales, when trial-to-trial variability gives rise to diverse patterns of error dynamics. We show that an ideal observer can exploit this single-trial structure by adaptively tracking the dynamics of its belief about the state of the environment, which enables it to speed its own inferences and more reliably track its own error, but also causes it to violate the SAT. We show that these features can be used to improve overall performance during rapid escape. The resulting behavior qualitatively reproduces features of escape behavior in the fruit fly Drosophila melanogaster, whose escapes have presumably been highly optimized by natural selection.

    View Publication Page
    01/12/25 | An expanded palette of bright and photostable organellar Ca2+ sensors
    Moret A, Farrants H, Fan R, Zingg K, Gee CE, Oertner TG, Rangaraju V, Schreiter ER, de Juan-Sanz J
    bioRxiv. 01/2025:. doi: 10.1101/2025.01.10.632364

    The use of fluorescent sensors for functional imaging has revolutionized the study of organellar Ca2+ signaling. However, understanding the dynamic interplay between intracellular Ca2+ sinks and sources requires bright, photostable and multiplexed measurements in each signaling compartment of interest to dissect the origins and destinations of Ca2+ fluxes. We introduce a new toolkit of chemigenetic indicators based on HaloCaMP, optimized to report Ca2+ dynamics in the endoplasmic reticulum (ER) and mitochondria of mammalian cells and neurons. Both ER-HaloCaMP and Mito-HaloCaMP present high brightness and responsiveness, and the use of different HaloTag ligands enables tunable red and far-red emission when quantifying organelle Ca2+ dynamics, expanding significantly multiplexing capacities of Ca2+ signaling. The improved brightness of ER-HaloCaMP using either red or far-red HaloTag ligands enabled measuring ER Ca2+ fluxes in axons of neurons, in which the ER is formed by a tiny tubule of 30-60 nanometers of diameter that impeded measurements with previous red ER Ca2+ sensors. When measuring ER Ca2+ fluxes in activated neuronal dendritic spines of cultured neurons, ER-HaloCaMP presented increased photostability compared to the gold-standard ER Ca2+ sensor in the field, ER-GCaMP6-210, while presenting the same responsiveness. On the other hand, Mito-HaloCaMP presented higher responsiveness than current red sensors, and enabled the first measurements of mitochondrial Ca2+ signaling in far-red in cell lines and primary neurons. As a proof-of-concept, we used 3-plex multiplexing to quantify interorganellar Ca2+ signaling. We show that effective transfer of Ca2+ from the ER to mitochondria depends on the ER releasing a critical amount of Ca2+. When this threshold is not met, the mobilized Ca2+ is diverted to the cytosol instead. Our new toolkit provides an expanded palette of bright, photostable and responsive organellar Ca2+ sensors, which will facilitate future studies of intracellular Ca2+ signaling.

    View Publication Page
    12/24/24 | An Image Processing Tool for Automated Quantification of Bacterial Burdens in Zebrafish Larvae.
    Yamaguchi N, Otsuna H, Eisenberg-Bord M, Ramakrishnan L
    Zebrafish. 12/2024:. doi: 10.1089/zeb.2024.0170

    Zebrafish larvae are used to model the pathogenesis of multiple bacteria. This transparent model offers the unique advantage of allowing quantification of fluorescent bacterial burdens (fluorescent pixel counts [FPC]) by facile microscopical methods, replacing enumeration of bacteria using time-intensive plating of lysates on bacteriological media. Accurate FPC measurements require laborious manual image processing to mark the outside borders of the animals so as to delineate the bacteria inside the animals from those in the culture medium that they are in. Here, we have developed an automated ImageJ/Fiji-based macro that accurately detects the outside borders of -infected larvae.

    View Publication Page
    02/24/25 | An updated catalogue of split-GAL4 driver lines for descending neurons in Drosophila melanogaster
    Zung JL, Namiki S, Meissner GW, Costa M, Eichler K, Stürner T, Jefferis GS, Managan C, FlyLight Project Team , Korff W, Card GM
    bioRxiv. 2025 Feb 24:. doi: 10.1101/2025.02.22.639679

    Descending neurons (DNs) occupy a key position in the sensorimotor hierarchy, conveying signals from the brain to the rest of the body below the neck. In Drosophila melanogaster flies, approximately 480 DN cell types have been described from electron-microscopy image datasets. Genetic access to these cell types is crucial for further investigation of their role in generating behaviour. We previously conducted the first large-scale survey of Drosophila melanogaster DNs, describing 98 unique cell types from light microscopy and generating cell-type-specific split-Gal4 driver lines for 65 of them. Here, we extend our previous work, describing the morphology of 137 additional DN types from light microscopy, bringing the total number DN types identified in light microscopy datasets to 235, or nearly 50%. In addition, we produced 500 new sparse split-Gal4 driver lines and compiled a list of previously published DN lines from the literature for a combined list of 738 split-Gal4 driver lines targeting 171 DN types.

    View Publication Page
    01/22/25 | Bio-inspired 3D-printed phantom: Encoding cellular heterogeneity for characterization of quantitative phase imaging
    Sylvia Desissaire , Michał Ziemczonok , Tigrane Cantat-Moltrecht , Arkadiusz Kuś , Guillaume Godefroy , Lionel Hervé , Chiara Paviolo , Wojciech Krauze , Cédric Allier , Ondrej Mandula , Małgorzata Kujawińska
    Measurement. 01/2025;247:116765. doi: https://doi.org/10.1016/j.measurement.2025.116765

    Quantitative phase imaging (QPI) has proven to be a valuable tool for advanced biological and pharmacological research, providing phase information for the study of cell features and physiology in label-free conditions. The next step for QPI to become a gold standard is the quantitative assessment of the phase gradients over the different microscopy setups. Given the large variety of QPI systems, a systematic comparison is a challenging task, and requires a calibration target representative of the living samples. In this paper, we introduce a tailor-made 3D-printed phantom derived from phase images of eukaryotic cells. It comprises typical morphologies and optical thicknesses found in biological cultures and is characterized with digital holographic microscopy (reference measurements). The performance of three different full field QPI optical systems, in terms of optical path difference and dry mass accuracy, were evaluated. This phantom opens up other possibilities for the validation of reconstruction algorithms and post-processing routines, and paves the way for calibration targets designed ad hoc for specific biological questions.

    View Publication Page
    02/13/25 | BPS2025 - Local cytoplasmic tradewinds direct soluble proteins to their targets
    Galbraith CG, English BP, Boehm U, Galbraith J
    Biophysical Journal. 2025 Feb 13;124(3):375a - 376a. doi: 10.1016/j.bpj.2024.11.2032

    Inside the cell, proteins essential for signaling, morphogenesis, and migration navigate the complex, ever-changing environment through vesicular trafficking or microtubule-driven mechanisms. However, the mechanisms by which soluble proteins reach their target destinations remain unknown. Here, we show that soluble proteins are directed toward the cell’s advancing edge by advection, diffusion facilitated by fluid flow. The advective transport mechanism operates in a compartment at the front of the cell isolated from the rest of the cytoplasm by a semi-permeable actin-myosin barrier that restricts protein mixing between the compartment and the rest of the cytoplasm. Contraction at the barrier generates a molecularly non-specific fluid flow that propels treadmilling actin monomer, actin-binding, adhesion, and even inert proteins forward. Changes in the dynamic local curvature of the barrier direct the flow, targeting proteins toward the protruding regions of the leading edge, effectively coordinating the distribution of proteins needed for local changes in cellular dynamics. Outside the compartment, diffusion is the primary mode of soluble protein transport. Our findings suggest that cells possess previously unrecognized organizational strategies for managing soluble protein concentration and distributing them efficiently for activities such as protrusion and adhesion.

    View Publication Page
    01/21/25 | Cell type-specific driver lines targeting the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation
    Wolff T, Eddison M, Chen N, Nern A, Sundaramurthi P, Sitaraman D, Rubin GM
    elife. 01/2025:. doi: 10.7554/elife.104764.2

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    View Publication Page
    02/12/25 | Cellpose3: one-click image restoration for improved cellular segmentation.
    Stringer C, Pachitariu M
    Nat Methods. 2025 Feb 12:. doi: 10.1038/s41592-025-02595-5

    Generalist methods for cellular segmentation have good out-of-the-box performance on a variety of image types; however, existing methods struggle for images that are degraded by noise, blurring or undersampling, all of which are common in microscopy. We focused the development of Cellpose3 on addressing these cases and here we demonstrate substantial out-of-the-box gains in segmentation and image quality for noisy, blurry and undersampled images. Unlike previous approaches that train models to restore pixel values, we trained Cellpose3 to output images that are well segmented by a generalist segmentation model, while maintaining perceptual similarity to the target images. Furthermore, we trained the restoration models on a large, varied collection of datasets, thus ensuring good generalization to user images. We provide these tools as 'one-click' buttons inside the graphical interface of Cellpose as well as in the Cellpose API.

    View Publication Page