Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2773 Janelia Publications

Showing 1401-1410 of 2773 results
01/01/14 | iPfam: a database of protein family and domain interactions found in the Protein Data Bank.
Finn RD, Miller BL, Clements J, Bateman A
Nucleic acids research. 2014 Jan;42:D364-73. doi: 10.1093/nar/gkt1210

The database iPfam, available at http://ipfam.org, catalogues Pfam domain interactions based on known 3D structures that are found in the Protein Data Bank, providing interaction data at the molecular level. Previously, the iPfam domain-domain interaction data was integrated within the Pfam database and website, but it has now been migrated to a separate database. This allows for independent development, improving data access and giving clearer separation between the protein family and interactions datasets. In addition to domain-domain interactions, iPfam has been expanded to include interaction data for domain bound small molecule ligands. Functional annotations are provided from source databases, supplemented by the incorporation of Wikipedia articles where available. iPfam (version 1.0) contains >9500 domain-domain and 15 500 domain-ligand interactions. The new website provides access to this data in a variety of ways, including interactive visualizations of the interaction data.

View Publication Page
10/14/24 | IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer.
Xu L, Peng F, Luo Q, Ding Y, Yuan F, Zheng L, He W, Zhang SS, Fu X, Liu J, Mutlu AS, Wang S, Nehring RB, Li X, Tang Q, Li C, Lv X, Dobrolecki LE, Zhang W, Han D, Zhao N, Jaehnig E, Wang J, Wu W, Graham DA, Li Y, Chen R, Peng W, Chen Y, Catic A, Zhang Z, Zhang B, Mustoe AM, Koong AC, Miles G, Lewis MT, Wang MC, Rosenberg SM, O'Malley BW, Westbrook TF, Xu H, Zhang XH, Osborne CK, Li JB, Ellis MJ, Rimawi MF, Rosen JM, Chen X
Cell. 2024 Oct 14:. doi: 10.1016/j.cell.2024.09.032

Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53 TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1 immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.

View Publication Page
12/22/14 | Isolation of mitochondria from animal tissue.
Clayton DA, Shadel GS
Cold Spring Harbor Protocols. 2014 Oct;2014(10):pdb.prot080010. doi: 10.1101/pdb.prot080010

Rat or mouse liver is the most frequently used tissue for mitochondrial preparations because it is readily available, easy to homogenize, and replete with mitochondria. A motor-driven Teflon and glass Potter-Elvehjem homogenizer is the best choice for homogenizing liver, but if one is not available, this tissue is soft enough that a Dounce homogenizer with a loose (A) pestle can also be used. The yield and purity of the mitochondrial preparation will be influenced by the method and speed of preparation and the age and physiological condition of the animal.

View Publication Page
10/01/14 | Isolation of mitochondria from cells and tissues.
Clayton DA, Shadel GS
Cold Spring Harbor Protocols. 2014 Oct;2014(10):pdb.top074542. doi: 10.1101/pdb.top074542

Mitochondria are complex organelles at the center of cellular metabolism, apoptosis, and signaling. They continue to be the subject of intense basic investigation to understand their composition and function, but they have also captivated the attention of clinical researchers because of the growing knowledge of the (sometimes unexpected) roles of mitochondria in human diseases and aging. A full understanding of these intriguing organelles often requires their purification from cells or tissues under specific physiological or pathological conditions. Here we provide some introductory considerations for those interested in purifying mitochondria for subsequent downstream biophysical, structural, and functional analysis.

View Publication Page
12/22/14 | Isolation of mitochondria from tissue culture cells.
Clayton DA, Shadel GS
Cold Spring Harbor Protocols. 2014 Oct;2014(10):pdb.prot080002. doi: 10.1101/pdb.prot080002

The number of mitochondria per cell varies substantially from cell line to cell line. For example, human HeLa cells contain at least twice as many mitochondria as smaller mouse L cells. This protocol starts with a washed cell pellet of 1-2 mL derived from ∼10⁹ cells grown in culture. The cells are swollen in a hypotonic buffer and ruptured with a Dounce or Potter-Elvehjem homogenizer using a tight-fitting pestle, and mitochondria are isolated by differential centrifugation.

View Publication Page
08/12/22 | Isolation, cryo-laser scanning confocal microscope imaging and cryo-FIB milling of mouse glutamatergic synaptosomes.
Gogoi P, Shiozaki M, Gouaux E
PLoS One. 2022 Aug 12;17(8):e0271799. doi: 10.1371/journal.pone.0271799

Ionotropic glutamate receptors (iGluRs) at postsynaptic terminals mediate the majority of fast excitatory neurotransmission in response to release of glutamate from the presynaptic terminal. Obtaining structural information on the molecular organization of iGluRs in their native environment, along with other signaling and scaffolding proteins in the postsynaptic density (PSD), and associated proteins on the presynaptic terminal, would enhance understanding of the molecular basis for excitatory synaptic transmission in normal and in disease states. Cryo-electron tomography (ET) studies of synaptosomes is one attractive vehicle by which to study iGluR-containing excitatory synapses. Here we describe a workflow for the preparation of glutamatergic synaptosomes for cryo-ET studies. We describe the utilization of fluorescent markers for the facile detection of the pre and postsynaptic terminals of glutamatergic synaptosomes using cryo-laser scanning confocal microscope (cryo-LSM). We further provide the details for preparation of lamellae, between ~100 to 200 nm thick, of glutamatergic synaptosomes using cryo-focused ion-beam (FIB) milling. We monitor the lamella preparation using a scanning electron microscope (SEM) and following lamella production, we identify regions for subsequent cryo-ET studies by confocal fluorescent imaging, exploiting the pre and postsynaptic fluorophores.

View Publication Page
09/04/19 | Isomeric tuning yields bright and targetable red Ca indicators.
Deo C, Sheu S, Seo J, Clapham DE, Lavis LD
Journal of the American Chemical Society. 2019 Sep 04;141(35):13734-13738. doi: 10.1021/jacs.9b06092

Targeting small-molecule fluorescent indicators using genetically encoded protein tags yields new hybrid sensors for biological imaging. Optimization of such systems requires redesign of the synthetic indicator to allow cell-specific targeting without compromising the photophysical properties or cellular performance of the small-molecule probe. We developed a bright and sensitive Ca indicator by systematically exploring the relative configuration of dye and chelator, which can be targeted using the HaloTag self-labeling tag system. Our "isomeric tuning" approach is generalizable, yielding a far-red targetable indicator to visualize Ca fluxes in the primary cilium.

View Publication Page
06/01/24 | It only takes seconds for a human monoclonal autoantibody to inhibit N-methyl-D-aspartate receptors
Yang S, Heckmann J, Taha A, Gao S, Steinke S, Hust M, Prüß H, Furukawa H, Geis C, Heckmann M, Yu-Strzelczyk J
bioRxiv. 2024 Jun 01:. doi: 10.1101/2024.05.28.595700

Transfer of autoantibodies targeting ionotropic N-methyl-D-aspartate receptors in autoimmune encephalitis patients into mice leads to typical disease signs. Long-term effects of the pathogenic antibodies consist of immunoglobulin G-induced crosslinking and receptor internalization. We focused on the direct and immediate impact of a specific pathogenic patient-derived monoclonal autoantibody (immunoglobulin G #003-102) on receptor function.We performed cell-attached recordings in cells transfected with the GluN1 and GluN2A subunit of the N-methyl-D-aspartate receptor. Immunoglobulin G #003-102 binds to the amino-terminal domain of the glycine-binding GluN1 subunit. It reduced simultaneous receptor openings significantly compared to controls at both low and high glutamate and glycine concentrations. Closer examination of our data in 50-second to 2-second intervals revealed, that Immunoglobulin G #003-102 rapidly decreases the number of open receptors. However, antigen-binding fragments of immunoglobulin G #003-102 did not reduce the receptor openings.In conclusion, patient-derived immunoglobulin G #003-102 inhibits N-methyl-D-aspartate receptors rapidly and directly before receptor internalization occurs and the entire immunoglobulin G is necessary for this acute inhibitory effect. This suggests an application of the antigen-binding fragment-like constructs of #003-102 as a potential new treatment strategy for shielding the pathogenic epitopes on the N-methyl-D-aspartate receptors.

View Publication Page
07/04/24 | iTome Volumetric Serial Sectioning Apparatus for TEM
Peale DR, Hess H, Lee PR, Cardona A, Bock DD, Schneider-Mizell C, Fetter RD, Lee W, Robinson CG, Iyer N, Managan C
bioRxiv. 2024 Jul 07:. doi: 10.1101/2024.07.02.601671

An automated ultra-microtome capable of sectioning thousands of ultrathin sections onto standard TEM slot grids was developed and used to section: a complete Drosophila melanogaster first-instar larva, three sections per grid, into 4,866 34-nm-thick sections with a cutting and pickup success rate of 99.74%; 30 microns of mouse cortex measuring roughly 400 um x 2000 um at 40 nm per slice; and a full adult Drosophila brain and ventral nerve column into 9,300 sections with a pickup success rate of 99.95%. The apparatus uses optical interferometers to monitor a reference distance between the cutting knife and multiple sample blocks. Cut sections are picked up from the knife-boat water surface while they are still anchored to the cutting knife. Blocks without embedded tissue are used to displace tissue-containing sections away from the knife edge so that the tissue regions end up in the grid slot instead of on the grid rim.

View Publication Page
12/01/12 | JAABA: interactive machine learning for automatic annotation of animal behavior.
Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson K
Nature Methods. 2012 Dec;10:64-7

We present a machine learning–based system for automatically computing interpretable, quantitative measures of animal behavior. Through our interactive system, users encode their intuition about behavior by annotating a small set of video frames. These manual labels are converted into classifiers that can automatically annotate behaviors in screen-scale data sets. Our general-purpose system can create a variety of accurate individual and social behavior classifiers for different organisms, including mice and adult and larval Drosophila.

View Publication Page